These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 34194693)

  • 21. Development of a graph convolutional neural network model for efficient prediction of protein-ligand binding affinities.
    Son J; Kim D
    PLoS One; 2021; 16(4):e0249404. PubMed ID: 33831016
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Leveraging scaffold information to predict protein-ligand binding affinity with an empirical graph neural network.
    Xia C; Feng SH; Xia Y; Pan X; Shen HB
    Brief Bioinform; 2023 Jan; 24(1):. PubMed ID: 36627113
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Stalis: A Computational Method for Template-Based Ab Initio Ligand Design.
    Lee HS; Im W
    J Comput Chem; 2019 Jun; 40(17):1622-1632. PubMed ID: 30829435
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Deep neural network affinity model for BACE inhibitors in D3R Grand Challenge 4.
    Wang B; Ng HL
    J Comput Aided Mol Des; 2020 Feb; 34(2):201-217. PubMed ID: 31916049
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Predicting protein-ligand binding residues with deep convolutional neural networks.
    Cui Y; Dong Q; Hong D; Wang X
    BMC Bioinformatics; 2019 Feb; 20(1):93. PubMed ID: 30808287
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Bionoi: A Voronoi Diagram-Based Representation of Ligand-Binding Sites in Proteins for Machine Learning Applications.
    Feinstein J; Shi W; Ramanujam J; Brylinski M
    Methods Mol Biol; 2021; 2266():299-312. PubMed ID: 33759134
    [TBL] [Abstract][Full Text] [Related]  

  • 27. DEELIG: A Deep Learning Approach to Predict Protein-Ligand Binding Affinity.
    Ahmed A; Mam B; Sowdhamini R
    Bioinform Biol Insights; 2021; 15():11779322211030364. PubMed ID: 34290496
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Streamlining Computational Fragment-Based Drug Discovery through Evolutionary Optimization Informed by Ligand-Based Virtual Prescreening.
    Chandraghatgi R; Ji HF; Rosen GL; Sokhansanj BA
    J Chem Inf Model; 2024 May; 64(9):3826-3840. PubMed ID: 38696451
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Virtual Screening of Molecules via Neural Fingerprint-based Deep Learning Technique.
    Monsia R; Bhattacharyya S
    Res Sq; 2024 May; ():. PubMed ID: 38766198
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Protein Family-Specific Models Using Deep Neural Networks and Transfer Learning Improve Virtual Screening and Highlight the Need for More Data.
    Imrie F; Bradley AR; van der Schaar M; Deane CM
    J Chem Inf Model; 2018 Nov; 58(11):2319-2330. PubMed ID: 30273487
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Pose Classification Using Three-Dimensional Atomic Structure-Based Neural Networks Applied to Ion Channel-Ligand Docking.
    Shim H; Kim H; Allen JE; Wulff H
    J Chem Inf Model; 2022 May; 62(10):2301-2315. PubMed ID: 35447030
    [TBL] [Abstract][Full Text] [Related]  

  • 32.
    de Souza Neto LR; Moreira-Filho JT; Neves BJ; Maidana RLBR; Guimarães ACR; Furnham N; Andrade CH; Silva FP
    Front Chem; 2020; 8():93. PubMed ID: 32133344
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Assisting Multitargeted Ligand Affinity Prediction of Receptor Tyrosine Kinases Associated Nonsmall Cell Lung Cancer Treatment with Multitasking Principal Neighborhood Aggregation.
    Nakarin F; Boonpalit K; Kinchagawat J; Wachiraphan P; Rungrotmongkol T; Nutanong S
    Molecules; 2022 Feb; 27(4):. PubMed ID: 35209011
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Data Integration Using Advances in Machine Learning in Drug Discovery and Molecular Biology.
    Hudson IL
    Methods Mol Biol; 2021; 2190():167-184. PubMed ID: 32804365
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Convolutional neural network based on SMILES representation of compounds for detecting chemical motif.
    Hirohara M; Saito Y; Koda Y; Sato K; Sakakibara Y
    BMC Bioinformatics; 2018 Dec; 19(Suppl 19):526. PubMed ID: 30598075
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Coupling Matched Molecular Pairs with Machine Learning for Virtual Compound Optimization.
    Turk S; Merget B; Rippmann F; Fulle S
    J Chem Inf Model; 2017 Dec; 57(12):3079-3085. PubMed ID: 29131617
    [TBL] [Abstract][Full Text] [Related]  

  • 37. HydraScreen: A Generalizable Structure-Based Deep Learning Approach to Drug Discovery.
    Prat A; Abdel Aty H; Bastas O; Kamuntavičius G; Paquet T; Norvaišas P; Gasparotto P; Tal R
    J Chem Inf Model; 2024 Aug; 64(15):5817-5831. PubMed ID: 39037942
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Prediction of drug-target binding affinity based on deep learning models.
    Zhang H; Liu X; Cheng W; Wang T; Chen Y
    Comput Biol Med; 2024 May; 174():108435. PubMed ID: 38608327
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Fragment databases from screened ligands for drug discovery (FDSL-DD).
    Wilson J; Sokhansanj BA; Chong WC; Chandraghatgi R; Rosen GL; Ji HF
    J Mol Graph Model; 2024 Mar; 127():108669. PubMed ID: 38011826
    [TBL] [Abstract][Full Text] [Related]  

  • 40. K
    Jiménez J; Škalič M; Martínez-Rosell G; De Fabritiis G
    J Chem Inf Model; 2018 Feb; 58(2):287-296. PubMed ID: 29309725
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.