BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 34194703)

  • 21. Mixed exciton-charge-transfer states in photosystem II: Stark spectroscopy on site-directed mutants.
    Romero E; Diner BA; Nixon PJ; Coleman WJ; Dekker JP; van Grondelle R
    Biophys J; 2012 Jul; 103(2):185-94. PubMed ID: 22853895
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Towards a quantitative description of excitonic couplings in photosynthetic pigment-protein complexes: quantum chemistry driven multiscale approaches.
    Friedl C; Fedorov DG; Renger T
    Phys Chem Chem Phys; 2022 Feb; 24(8):5014-5038. PubMed ID: 35142765
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mixing of exciton and charge-transfer states in Photosystem II reaction centers: modeling of Stark spectra with modified Redfield theory.
    Novoderezhkin VI; Dekker JP; van Grondelle R
    Biophys J; 2007 Aug; 93(4):1293-311. PubMed ID: 17526589
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Chlorophyll a fluorescence rise induced by high light illumination of dark-adapted plant tissue studied by means of a model of photosystem II and considering photosystem II heterogeneity.
    Lazár D
    J Theor Biol; 2003 Feb; 220(4):469-503. PubMed ID: 12623282
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Charge Separation and Exciton Dynamics at Polymer/ZnO Interface from First-Principles Simulations.
    Wu G; Li Z; Zhang X; Lu G
    J Phys Chem Lett; 2014 Aug; 5(15):2649-56. PubMed ID: 26277958
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Quantum dynamics of the photoinduced charge separation in a symmetric donor-acceptor-donor triad: The role of vibronic couplings, symmetry and temperature.
    Picconi D
    J Chem Phys; 2022 May; 156(18):184105. PubMed ID: 35568540
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Charge separation in the photosystem II reaction center resolved by multispectral two-dimensional electronic spectroscopy.
    Nguyen HH; Song Y; Maret EL; Silori Y; Willow R; Yocum CF; Ogilvie JP
    Sci Adv; 2023 May; 9(18):eade7190. PubMed ID: 37134172
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Hidden vibronic and excitonic structure and vibronic coherence transfer in the bacterial reaction center.
    Policht VR; Niedringhaus A; Willow R; Laible PD; Bocian DF; Kirmaier C; Holten D; Mančal T; Ogilvie JP
    Sci Adv; 2022 Jan; 8(1):eabk0953. PubMed ID: 34985947
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The Electronic Origin of Far-Red-Light-Driven Oxygenic Photosynthesis.
    Sirohiwal A; Pantazis DA
    Angew Chem Int Ed Engl; 2022 Apr; 61(16):e202200356. PubMed ID: 35142017
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Molecular dynamics study of the primary charge separation reactions in Photosystem I: effect of the replacement of the axial ligands to the electron acceptor A₀.
    Milanovsky GE; Ptushenko VV; Golbeck JH; Semenov AY; Cherepanov DA
    Biochim Biophys Acta; 2014 Sep; 1837(9):1472-83. PubMed ID: 24637178
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Utilizing the dynamic stark shift as a probe for dielectric relaxation in photosynthetic reaction centers during charge separation.
    Guo Z; Lin S; Woodbury NW
    J Phys Chem B; 2013 Sep; 117(38):11383-90. PubMed ID: 23799254
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Energetic insights into two electron transfer pathways in light-driven energy-converting enzymes.
    Kawashima K; Ishikita H
    Chem Sci; 2018 May; 9(17):4083-4092. PubMed ID: 29780537
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ground-State Electronic Structure of RC-LH1 and LH2 Pigment Assemblies of Purple Bacteria via the EBF-MO Method.
    Shrestha K; Jakubikova E
    J Phys Chem A; 2015 Aug; 119(33):8934-43. PubMed ID: 26215074
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The roles of electronic exchange and correlation in charge-transfer- to-solvent dynamics: Many-electron nonadiabatic mixed quantum/classical simulations of photoexcited sodium anions in the condensed phase.
    Glover WJ; Larsen RE; Schwartz BJ
    J Chem Phys; 2008 Oct; 129(16):164505. PubMed ID: 19045282
    [TBL] [Abstract][Full Text] [Related]  

  • 35. How exciton-vibrational coherences control charge separation in the photosystem II reaction center.
    Novoderezhkin VI; Romero E; van Grondelle R
    Phys Chem Chem Phys; 2015 Dec; 17(46):30828-41. PubMed ID: 25854607
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Action spectra of photosystems II and I and quantum yield of photosynthesis in leaves in State 1.
    Laisk A; Oja V; Eichelmann H; Dall'Osto L
    Biochim Biophys Acta; 2014 Feb; 1837(2):315-25. PubMed ID: 24333386
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Quantum Coherence in Photosynthesis for Efficient Solar Energy Conversion.
    Romero E; Augulis R; Novoderezhkin VI; Ferretti M; Thieme J; Zigmantas D; van Grondelle R
    Nat Phys; 2014 Sep; 10(9):676-682. PubMed ID: 26870153
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Quantum chemical elucidation of a sevenfold symmetric bacterial antenna complex.
    Cupellini L; Qian P; Nguyen-Phan TC; Gardiner AT; Cogdell RJ
    Photosynth Res; 2023 Apr; 156(1):75-87. PubMed ID: 35672557
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Oxygen-evolving Photosystem II core complexes: a new paradigm based on the spectral identification of the charge-separating state, the primary acceptor and assignment of low-temperature fluorescence.
    Krausz E; Hughes JL; Smith P; Pace R; Peterson Arsköld S
    Photochem Photobiol Sci; 2005 Sep; 4(9):744-53. PubMed ID: 16121287
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Excited-State Symmetry-Breaking Charge Separation Dynamics in Multibranched Perylene Diimide Molecules.
    Kong J; Zhang W; Li G; Huo D; Guo Y; Niu X; Wan Y; Tang B; Xia A
    J Phys Chem Lett; 2020 Dec; 11(24):10329-10339. PubMed ID: 33232151
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.