These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
242 related articles for article (PubMed ID: 34194934)
1. Degradation Behavior, Biocompatibility, Electrochemical Performance, and Circularity Potential of Transient Batteries. Mittal N; Ojanguren A; Niederberger M; Lizundia E Adv Sci (Weinh); 2021 Jun; 8(12):2004814. PubMed ID: 34194934 [TBL] [Abstract][Full Text] [Related]
2. Transient Batteries: A Promising Step Towards Powering Green Electronics. Mittal N; Niederberger M Chimia (Aarau); 2022 Apr; 76(4):298-302. PubMed ID: 38069767 [TBL] [Abstract][Full Text] [Related]
3. Designing for Degradation: Transient Devices Enabled by (Nano)Cellulose. Andrew LJ; Lizundia E; MacLachlan MJ Adv Mater; 2024 Sep; ():e2401560. PubMed ID: 39221689 [TBL] [Abstract][Full Text] [Related]
4. The Minderoo-Monaco Commission on Plastics and Human Health. Landrigan PJ; Raps H; Cropper M; Bald C; Brunner M; Canonizado EM; Charles D; Chiles TC; Donohue MJ; Enck J; Fenichel P; Fleming LE; Ferrier-Pages C; Fordham R; Gozt A; Griffin C; Hahn ME; Haryanto B; Hixson R; Ianelli H; James BD; Kumar P; Laborde A; Law KL; Martin K; Mu J; Mulders Y; Mustapha A; Niu J; Pahl S; Park Y; Pedrotti ML; Pitt JA; Ruchirawat M; Seewoo BJ; Spring M; Stegeman JJ; Suk W; Symeonides C; Takada H; Thompson RC; Vicini A; Wang Z; Whitman E; Wirth D; Wolff M; Yousuf AK; Dunlop S Ann Glob Health; 2023; 89(1):23. PubMed ID: 36969097 [TBL] [Abstract][Full Text] [Related]
5. A critical review of the circular economy for lithium-ion batteries and photovoltaic modules - status, challenges, and opportunities. Heath GA; Ravikumar D; Hansen B; Kupets E J Air Waste Manag Assoc; 2022 Jun; 72(6):478-539. PubMed ID: 35687330 [TBL] [Abstract][Full Text] [Related]
6. Multifunctional Batteries: Flexible, Transient, and Transparent. Wehner LA; Mittal N; Liu T; Niederberger M ACS Cent Sci; 2021 Feb; 7(2):231-244. PubMed ID: 33655063 [TBL] [Abstract][Full Text] [Related]
7. Chitin Nanofibrils from Fungi for Hierarchical Gel Polymer Electrolytes for Transient Zinc-Ion Batteries with Stable Zn Electrodeposition. Ruiz D; Michel VF; Niederberger M; Lizundia E Small; 2023 Nov; 19(45):e2303394. PubMed ID: 37434080 [TBL] [Abstract][Full Text] [Related]
8. Sustainable Recycling Technology for Li-Ion Batteries and Beyond: Challenges and Future Prospects. Fan E; Li L; Wang Z; Lin J; Huang Y; Yao Y; Chen R; Wu F Chem Rev; 2020 Jul; 120(14):7020-7063. PubMed ID: 31990183 [TBL] [Abstract][Full Text] [Related]
9. Active Transiency: A Novel Approach to Expedite Degradation in Transient Electronics. Jamshidi R; Chen Y; Montazami R Materials (Basel); 2020 Mar; 13(7):. PubMed ID: 32224921 [TBL] [Abstract][Full Text] [Related]
10. Polydiketoenamines for a Circular Plastics Economy. Helms BA Acc Chem Res; 2022 Oct; 55(19):2753-2765. PubMed ID: 36108255 [TBL] [Abstract][Full Text] [Related]
11. Lithium-ion batteries towards circular economy: A literature review of opportunities and issues of recycling treatments. Mossali E; Picone N; Gentilini L; Rodrìguez O; Pérez JM; Colledani M J Environ Manage; 2020 Jun; 264():110500. PubMed ID: 32250918 [TBL] [Abstract][Full Text] [Related]
12. Polypeptide organic radical batteries. Nguyen TP; Easley AD; Kang N; Khan S; Lim SM; Rezenom YH; Wang S; Tran DK; Fan J; Letteri RA; He X; Su L; Yu CH; Lutkenhaus JL; Wooley KL Nature; 2021 May; 593(7857):61-66. PubMed ID: 33953410 [TBL] [Abstract][Full Text] [Related]
13. Three-Dimensional Printed Poly(vinyl alcohol) Substrate with Controlled On-Demand Degradation for Transient Electronics. Yoon J; Han J; Choi B; Lee Y; Kim Y; Park J; Lim M; Kang MH; Kim DH; Kim DM; Kim S; Choi SJ ACS Nano; 2018 Jun; 12(6):6006-6012. PubMed ID: 29791138 [TBL] [Abstract][Full Text] [Related]
14. Recycling technologies, policies, prospects, and challenges for spent batteries. Kang Z; Huang Z; Peng Q; Shi Z; Xiao H; Yin R; Fu G; Zhao J iScience; 2023 Nov; 26(11):108072. PubMed ID: 37867952 [TBL] [Abstract][Full Text] [Related]
15. Recycling chains for lithium-ion batteries: A critical examination of current challenges, opportunities and process dependencies. Windisch-Kern S; Gerold E; Nigl T; Jandric A; Altendorfer M; Rutrecht B; Scherhaufer S; Raupenstrauch H; Pomberger R; Antrekowitsch H; Part F Waste Manag; 2022 Feb; 138():125-139. PubMed ID: 34875455 [TBL] [Abstract][Full Text] [Related]
16. The Current Process for the Recycling of Spent Lithium Ion Batteries. Zhou LF; Yang D; Du T; Gong H; Luo WB Front Chem; 2020; 8():578044. PubMed ID: 33344413 [TBL] [Abstract][Full Text] [Related]
17. Environmental impacts of hazardous waste, and management strategies to reconcile circular economy and eco-sustainability. Zhang Z; Malik MZ; Khan A; Ali N; Malik S; Bilal M Sci Total Environ; 2022 Feb; 807(Pt 2):150856. PubMed ID: 34627923 [TBL] [Abstract][Full Text] [Related]
18. Environmental Benefit Assessment of Second-Life Use of Electric Vehicle Lithium-Ion Batteries in Multiple Scenarios Considering Performance Degradation and Economic Value. Cui J; Tan Q; Liu L; Li J Environ Sci Technol; 2023 Jun; 57(23):8559-8567. PubMed ID: 37272409 [TBL] [Abstract][Full Text] [Related]
19. High-Energy-Density Metal-Oxygen Batteries: Lithium-Oxygen Batteries vs Sodium-Oxygen Batteries. Song K; Agyeman DA; Park M; Yang J; Kang YM Adv Mater; 2017 Dec; 29(48):. PubMed ID: 28940885 [TBL] [Abstract][Full Text] [Related]
20. Green Recycling Methods to Treat Lithium-Ion Batteries E-Waste: A Circular Approach to Sustainability. Roy JJ; Rarotra S; Krikstolaityte V; Zhuoran KW; Cindy YD; Tan XY; Carboni M; Meyer D; Yan Q; Srinivasan M Adv Mater; 2022 Jun; 34(25):e2103346. PubMed ID: 34632652 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]