These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 34195231)

  • 1. Safety Assessment Review of a Dressing Assistance Robot.
    Delgado Bellamy D; Chance G; Caleb-Solly P; Dogramadzi S
    Front Robot AI; 2021; 8():667316. PubMed ID: 34195231
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Human Factors Considerations for Quantifiable Human States in Physical Human-Robot Interaction: A Literature Review.
    Abdulazeem N; Hu Y
    Sensors (Basel); 2023 Aug; 23(17):. PubMed ID: 37687837
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A robot for overground physical human-robot interaction experiments.
    Regmi S; Burns D; Song YS
    PLoS One; 2022; 17(11):e0276980. PubMed ID: 36355780
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Study on the Effects of Cognitive Overloading and Distractions on Human Movement During Robot-Assisted Dressing.
    Camilleri A; Dogramadzi S; Caleb-Solly P
    Front Robot AI; 2022; 9():815871. PubMed ID: 35592682
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Human-Robot Perception in Industrial Environments: A Survey.
    Bonci A; Cen Cheng PD; Indri M; Nabissi G; Sibona F
    Sensors (Basel); 2021 Feb; 21(5):. PubMed ID: 33668162
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A systematic review of study results reported for the evaluation of robotic rollators from the perspective of users.
    Werner C; Ullrich P; Geravand M; Peer A; Bauer JM; Hauer K
    Disabil Rehabil Assist Technol; 2018 Jan; 13(1):31-39. PubMed ID: 28125298
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Helping People Through Space and Time: Assistance as a Perspective on Human-Robot Interaction.
    Newman BA; Aronson RM; Kitani K; Admoni H
    Front Robot AI; 2021; 8():720319. PubMed ID: 35155586
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Human-Robot Interaction Perspective on Assistive and Rehabilitation Robotics.
    Beckerle P; Salvietti G; Unal R; Prattichizzo D; Rossi S; Castellini C; Hirche S; Endo S; Amor HB; Ciocarlie M; Mastrogiovanni F; Argall BD; Bianchi M
    Front Neurorobot; 2017; 11():24. PubMed ID: 28588473
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Promoting Interactions Between Humans and Robots Using Robotic Emotional Behavior.
    Ficocelli M; Terao J; Nejat G
    IEEE Trans Cybern; 2016 Dec; 46(12):2911-2923. PubMed ID: 26552105
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Systematic Review of Robotic Rehabilitation for Cognitive Training.
    Yuan F; Klavon E; Liu Z; Lopez RP; Zhao X
    Front Robot AI; 2021; 8():605715. PubMed ID: 34046433
    [TBL] [Abstract][Full Text] [Related]  

  • 11. SafeNet: a methodology for integrating general-purpose unsafe devices in safe-robot rehabilitation systems.
    Vicentini F; Pedrocchi N; Malosio M; Molinari Tosatti L
    Comput Methods Programs Biomed; 2014 Sep; 116(2):156-68. PubMed ID: 24750989
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Building a safe care-providing robot.
    Fotoohi L; Gräser A
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975483. PubMed ID: 22275681
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Virtual Sensor for Collision Detection and Distinction with Conventional Industrial Robots.
    Li Z; Ye J; Wu H
    Sensors (Basel); 2019 May; 19(10):. PubMed ID: 31126010
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Model-based safety analysis of human-robot interactions: the MIRAS walking assistance robot.
    Guiochet J; Hoang QA; Kaaniche M; Powell D
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650433. PubMed ID: 24187251
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An Automated Planning Model for HRI: Use Cases on Social Assistive Robotics.
    Fuentetaja R; García-Olaya A; García J; González JC; Fernández F
    Sensors (Basel); 2020 Nov; 20(22):. PubMed ID: 33202674
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Human-Robot Interaction With Robust Prediction of Movement Intention Surpasses Manual Control.
    Veselic S; Zito C; Farina D
    Front Neurorobot; 2021; 15():695022. PubMed ID: 34658829
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Admittance control scheme for implementing model-based assistance-as-needed on a robot.
    Carmichael MG; Liu D
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():870-3. PubMed ID: 24109826
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Physical human interaction for an inflatable manipulator.
    Sanan S; Ornstein MH; Atkeson CG
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():7401-4. PubMed ID: 22256049
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Mixed-Perception Approach for Safe Human-Robot Collaboration in Industrial Automation.
    Mohammadi Amin F; Rezayati M; van de Venn HW; Karimpour H
    Sensors (Basel); 2020 Nov; 20(21):. PubMed ID: 33171709
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Trends of Human-Robot Collaboration in Industry Contexts: Handover, Learning, and Metrics.
    Castro A; Silva F; Santos V
    Sensors (Basel); 2021 Jun; 21(12):. PubMed ID: 34203766
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.