These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
185 related articles for article (PubMed ID: 34195272)
1. Two Novel Allioui N; Driss F; Dhouib H; Jlail L; Tounsi S; Frikha-Gargouri O Biomed Res Int; 2021; 2021():6611657. PubMed ID: 34195272 [TBL] [Abstract][Full Text] [Related]
2. Lipopeptide culture filtrates from Bacillus spp. provide effective protection to wheat against the foliar pathogen Zymoseptoria tritici. El Arbi A; Arnauld S; Chataigné G; Lecouturier D; Bricout A; Gharsallah N; Jacques P; Siah A; Rochex A J Appl Microbiol; 2024 Jan; 135(1):. PubMed ID: 38115638 [TBL] [Abstract][Full Text] [Related]
3. Induction of resistance in wheat by bacterial cyclic lipopeptides. Khong NG; Randoux B; Deravel J; Tisserant B; Tayeh Ch; Coutte F; Bourdon N; Jacques P; Reignault P Commun Agric Appl Biol Sci; 2013; 78(3):479-87. PubMed ID: 25151823 [TBL] [Abstract][Full Text] [Related]
4. Biocontrol of the wheat pathogen Zymoseptoria tritici using cyclic lipopeptides from Bacillus subtilis. Mejri S; Siah A; Coutte F; Magnin-Robert M; Randoux B; Tisserant B; Krier F; Jacques P; Reignault P; Halama P Environ Sci Pollut Res Int; 2018 Oct; 25(30):29822-29833. PubMed ID: 28634804 [TBL] [Abstract][Full Text] [Related]
5. Control of Zymoseptoria tritici cause of septoria tritici blotch of wheat using antifungal Lactobacillus strains. Lynch KM; Zannini E; Guo J; Axel C; Arendt EK; Kildea S; Coffey A J Appl Microbiol; 2016 Aug; 121(2):485-94. PubMed ID: 27155088 [TBL] [Abstract][Full Text] [Related]
6. Isolation and yield optimization of lipopeptides from Bacillus subtilis Z-14 active against wheat take-all caused by Gaeumannomyces graminis var. tritici. Zhang X; Chen X; Qiao X; Fan X; Huo X; Zhang D J Sep Sci; 2021 Feb; 44(4):931-940. PubMed ID: 33326164 [TBL] [Abstract][Full Text] [Related]
7. Novel screening strategy reveals a potent Bacillus antagonist capable of mitigating wheat take-all disease caused by Gaeumannomyces graminis var. tritici. Zhang DD; Guo XJ; Wang YJ; Gao TG; Zhu BC Lett Appl Microbiol; 2017 Dec; 65(6):512-519. PubMed ID: 28977681 [TBL] [Abstract][Full Text] [Related]
8. Fengycin produced by Bacillus subtilis 9407 plays a major role in the biocontrol of apple ring rot disease. Fan H; Ru J; Zhang Y; Wang Q; Li Y Microbiol Res; 2017 Jun; 199():89-97. PubMed ID: 28454713 [TBL] [Abstract][Full Text] [Related]
9. The plant-associated Bacillus amyloliquefaciens strains MEP2 18 and ARP2 3 capable of producing the cyclic lipopeptides iturin or surfactin and fengycin are effective in biocontrol of sclerotinia stem rot disease. Alvarez F; Castro M; Príncipe A; Borioli G; Fischer S; Mori G; Jofré E J Appl Microbiol; 2012 Jan; 112(1):159-74. PubMed ID: 22017648 [TBL] [Abstract][Full Text] [Related]
10. In vitro evaluation of dill seed essential oil antifungal activities to control Zymoseptoria tritici. Deweer C; Yaguiyan A; Muchembled J; Sahmer K; Dermont C; Halama P Commun Agric Appl Biol Sci; 2013; 78(3):489-95. PubMed ID: 25151824 [TBL] [Abstract][Full Text] [Related]
11. The wheat-Septoria conflict: a new front opening up? O'Driscoll A; Kildea S; Doohan F; Spink J; Mullins E Trends Plant Sci; 2014 Sep; 19(9):602-10. PubMed ID: 24957882 [TBL] [Abstract][Full Text] [Related]
12. Novel Primer Sets for Rapid Detection of Kuzdraliński A; Leśniowska-Nowak J; Nowak M; Kawęcka M; Kot A; Różaniecka K; Ostrowska A; Muszyńska M; Waśko A; Szczerba H Plant Dis; 2021 Feb; 105(2):251-254. PubMed ID: 33297718 [No Abstract] [Full Text] [Related]
13. Importance of the C Platel R; Chaveriat L; Le Guenic S; Pipeleers R; Magnin-Robert M; Randoux B; Trapet P; Lequart V; Joly N; Halama P; Martin P; Höfte M; Reignault P; Siah A Molecules; 2020 Dec; 26(1):. PubMed ID: 33374771 [TBL] [Abstract][Full Text] [Related]
14. Analysis of cytochrome b(5) reductase-mediated metabolism in the phytopathogenic fungus Zymoseptoria tritici reveals novel functionalities implicated in virulence. Derbyshire MC; Michaelson L; Parker J; Kelly S; Thacker U; Powers SJ; Bailey A; Hammond-Kosack K; Courbot M; Rudd J Fungal Genet Biol; 2015 Sep; 82():69-84. PubMed ID: 26074495 [TBL] [Abstract][Full Text] [Related]
15. Comparative transcriptomic analyses of Zymoseptoria tritici strains show complex lifestyle transitions and intraspecific variability in transcription profiles. Palma-Guerrero J; Torriani SF; Zala M; Carter D; Courbot M; Rudd JJ; McDonald BA; Croll D Mol Plant Pathol; 2016 Aug; 17(6):845-59. PubMed ID: 26610174 [TBL] [Abstract][Full Text] [Related]
16. How Knowledge of Pathogen Population Biology Informs Management of Septoria Tritici Blotch. McDonald BA; Mundt CC Phytopathology; 2016 Sep; 106(9):948-55. PubMed ID: 27111799 [TBL] [Abstract][Full Text] [Related]
17. Presence of ice-nucleating Pseudomonas on wheat leaves promotes Septoria tritici blotch disease (Zymoseptoria tritici) via a mutually beneficial interaction. Fones HN Sci Rep; 2020 Oct; 10(1):17738. PubMed ID: 33082401 [TBL] [Abstract][Full Text] [Related]
18. Apoplastic recognition of multiple candidate effectors from the wheat pathogen Zymoseptoria tritici in the nonhost plant Nicotiana benthamiana. Kettles GJ; Bayon C; Canning G; Rudd JJ; Kanyuka K New Phytol; 2017 Jan; 213(1):338-350. PubMed ID: 27696417 [TBL] [Abstract][Full Text] [Related]
19. The iturin and fengycin families of lipopeptides are key factors in antagonism of Bacillus subtilis toward Podosphaera fusca. Romero D; de Vicente A; Rakotoaly RH; Dufour SE; Veening JW; Arrebola E; Cazorla FM; Kuipers OP; Paquot M; Pérez-García A Mol Plant Microbe Interact; 2007 Apr; 20(4):430-40. PubMed ID: 17427813 [TBL] [Abstract][Full Text] [Related]
20. Molecular and biochemical detection of fengycin- and bacillomycin D-producing Bacillus spp., antagonistic to fungal pathogens of canola and wheat. Ramarathnam R; Bo S; Chen Y; Fernando WG; Xuewen G; de Kievit T Can J Microbiol; 2007 Jul; 53(7):901-11. PubMed ID: 17898845 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]