These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 34195615)

  • 1. Editing the Shape Morphing of Monocomponent Natural Polysaccharide Hydrogel Films.
    Hu H; Huang C; Galluzzi M; Ye Q; Xiao R; Yu X; Du X
    Research (Wash D C); 2021; 2021():9786128. PubMed ID: 34195615
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Programmable Morphing Hydrogels for Soft Actuators and Robots: From Structure Designs to Active Functions.
    Jiao D; Zhu QL; Li CY; Zheng Q; Wu ZL
    Acc Chem Res; 2022 Jun; 55(11):1533-1545. PubMed ID: 35413187
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interfacial Dehydration Strategy for Chitosan Film Shape Morphing and Its Application.
    Liu Z; Wang Y; He H; Zhang C; Pan N; Wang L
    Nano Lett; 2024 Jun; 24(22):6665-6672. PubMed ID: 38767991
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Programmable Auxeticity in Hydrogel Metamaterials via Shape-Morphing Unit Cells.
    Skarsetz O; Slesarenko V; Walther A
    Adv Sci (Weinh); 2022 Aug; 9(23):e2201867. PubMed ID: 35748172
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Shape-Morphing Materials from Stimuli-Responsive Hydrogel Hybrids.
    Jeon SJ; Hauser AW; Hayward RC
    Acc Chem Res; 2017 Feb; 50(2):161-169. PubMed ID: 28181798
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Photopatterning Crystal Orientation in Shape-Morphing Polymers.
    Jang LK; Abdelrahman MK; Ware TH
    ACS Appl Mater Interfaces; 2021 Nov; ():. PubMed ID: 34723466
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Magnetic Dynamic Polymers for Modular Assembling and Reconfigurable Morphing Architectures.
    Kuang X; Wu S; Ze Q; Yue L; Jin Y; Montgomery SM; Yang F; Qi HJ; Zhao R
    Adv Mater; 2021 Jul; 33(30):e2102113. PubMed ID: 34146361
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bio-inspired facile strategy for programmable osmosis-driven shape-morphing elastomer composite structures.
    Yang Y; Wang Y; Lin M; Liu M; Huang C
    Mater Horiz; 2024 May; 11(9):2180-2190. PubMed ID: 38406864
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Shape Morphing of Hydrogels in Alternating Magnetic Field.
    Tang J; Yin Q; Qiao Y; Wang T
    ACS Appl Mater Interfaces; 2019 Jun; 11(23):21194-21200. PubMed ID: 31117469
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Controlled shape deformation of bilayer films with tough adhesion between nanocomposite hydrogels and polymer substrates.
    Li Y; Yang J; Yu X; Sun X; Chen F; Tang Z; Zhu L; Qin G; Chen Q
    J Mater Chem B; 2018 Nov; 6(41):6629-6636. PubMed ID: 32254871
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bioinspired Synergistic Fluorescence-Color-Switchable Polymeric Hydrogel Actuators.
    Wei S; Lu W; Le X; Ma C; Lin H; Wu B; Zhang J; Theato P; Chen T
    Angew Chem Int Ed Engl; 2019 Nov; 58(45):16243-16251. PubMed ID: 31475456
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Programmable Deformations of Biomimetic Composite Hydrogels Embedded with Printed Fibers.
    Zheng SY; Li CY; Du M; Yin J; Qian J; Wu ZL; Zheng Q
    ACS Appl Mater Interfaces; 2020 Dec; 12(51):57497-57504. PubMed ID: 33319983
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Programmed Transformations of Strong Polyvinyl Alcohol/Sodium Alginate Hydrogels via Ionic Crosslink Lithography.
    Li X; Xu D; Wang H; Gong C; Li H; Huang Y; Long S; Li D
    Macromol Rapid Commun; 2020 Jun; 41(11):e2000127. PubMed ID: 32430967
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Near-Infrared Light-Driven Shape-Programmable Hydrogel Actuators Loaded with Metal-Organic Frameworks.
    Zhang X; Xue P; Yang X; Valenzuela C; Chen Y; Lv P; Wang Z; Wang L; Xu X
    ACS Appl Mater Interfaces; 2022 Mar; 14(9):11834-11841. PubMed ID: 35192332
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 3D-to-3D Microscale Shape-Morphing from Configurable Helices with Controlled Chirality.
    Zhao Z; He Y; Meng X; Ye C
    ACS Appl Mater Interfaces; 2021 Dec; 13(51):61723-61732. PubMed ID: 34913686
    [TBL] [Abstract][Full Text] [Related]  

  • 16. PEG-Induced Controllable Thin-Thickness Gradient and Water Retention: A Simple Way to Programme Deformation of Hydrogel Actuators.
    Yang Y; Wang T; Tian F; Wang X; Hu Y; Xia X; Xu S
    Macromol Rapid Commun; 2021 Jul; 42(14):e2000749. PubMed ID: 34128581
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reconstructable Gradient Structures and Reprogrammable 3D Deformations of Hydrogels with Coumarin Units as the Photolabile Crosslinks.
    Zhu CN; Li CY; Wang H; Hong W; Huang F; Zheng Q; Wu ZL
    Adv Mater; 2021 May; 33(18):e2008057. PubMed ID: 33788313
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photolithographically Patterned Hydrogels with Programmed Deformations.
    Li CY; Hao XP; Wu ZL; Zheng Q
    Chem Asian J; 2019 Jan; 14(1):94-104. PubMed ID: 30239161
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photo-Dissociable Fe
    Wang H; Liu Z; Liu Z; Jiang J; Li G
    ACS Appl Mater Interfaces; 2021 Dec; 13(49):59310-59319. PubMed ID: 34865479
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Robotic surfaces with reversible, spatiotemporal control for shape morphing and object manipulation.
    Liu K; Hacker F; Daraio C
    Sci Robot; 2021 Apr; 6(53):. PubMed ID: 34043570
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.