These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
218 related articles for article (PubMed ID: 34195621)
1. UAS-Based Plant Phenotyping for Research and Breeding Applications. Guo W; Carroll ME; Singh A; Swetnam TL; Merchant N; Sarkar S; Singh AK; Ganapathysubramanian B Plant Phenomics; 2021; 2021():9840192. PubMed ID: 34195621 [TBL] [Abstract][Full Text] [Related]
2. Application of unmanned aerial systems for high throughput phenotyping of large wheat breeding nurseries. Haghighattalab A; González Pérez L; Mondal S; Singh D; Schinstock D; Rutkoski J; Ortiz-Monasterio I; Singh RP; Goodin D; Poland J Plant Methods; 2016; 12():35. PubMed ID: 27347001 [TBL] [Abstract][Full Text] [Related]
3. Remote sensing continuity: a comparison of HTP platforms and potential challenges with field applications. Herr AW; Carter AH Front Plant Sci; 2023; 14():1233892. PubMed ID: 37790786 [TBL] [Abstract][Full Text] [Related]
4. Wheat Height Estimation Using LiDAR in Comparison to Ultrasonic Sensor and UAS. Yuan W; Li J; Bhatta M; Shi Y; Baenziger PS; Ge Y Sensors (Basel); 2018 Nov; 18(11):. PubMed ID: 30400154 [TBL] [Abstract][Full Text] [Related]
5. Soybean iron deficiency chlorosis high throughput phenotyping using an unmanned aircraft system. Dobbels AA; Lorenz AJ Plant Methods; 2019; 15():97. PubMed ID: 31452673 [TBL] [Abstract][Full Text] [Related]
6. Developing Growth-Associated Molecular Markers Via High-Throughput Phenotyping in Spinach. Awika HO; Bedre R; Yeom J; Marconi TG; Enciso J; Mandadi KK; Jung J; Avila CA Plant Genome; 2019 Nov; 12(3):1-19. PubMed ID: 33016585 [TBL] [Abstract][Full Text] [Related]
7. High-Throughput Phenotyping Enabled Genetic Dissection of Crop Lodging in Wheat. Singh D; Wang X; Kumar U; Gao L; Noor M; Imtiaz M; Singh RP; Poland J Front Plant Sci; 2019; 10():394. PubMed ID: 31019521 [TBL] [Abstract][Full Text] [Related]
8. Unmanned Aerial Vehicle Remote Sensing for Field-Based Crop Phenotyping: Current Status and Perspectives. Yang G; Liu J; Zhao C; Li Z; Huang Y; Yu H; Xu B; Yang X; Zhu D; Zhang X; Zhang R; Feng H; Zhao X; Li Z; Li H; Yang H Front Plant Sci; 2017; 8():1111. PubMed ID: 28713402 [TBL] [Abstract][Full Text] [Related]
9. Design and Analysis of Cost-Efficient Sensor Deployment for Tracking Small UAS with Agent-Based Modeling. Shin S; Park S; Kim Y; Matson ET Sensors (Basel); 2016 Apr; 16(4):. PubMed ID: 27110790 [TBL] [Abstract][Full Text] [Related]
10. Embedded Computation Architectures for Autonomy in Unmanned Aircraft Systems (UAS). Mejias L; Diguet JP; Dezan C; Campbell D; Kok J; Coppin G Sensors (Basel); 2021 Feb; 21(4):. PubMed ID: 33562676 [TBL] [Abstract][Full Text] [Related]
11. A novel way to validate UAS-based high-throughput phenotyping protocols using in silico experiments for plant breeding purposes. Galli G; Sabadin F; Costa-Neto GMF; Fritsche-Neto R Theor Appl Genet; 2021 Feb; 134(2):715-730. PubMed ID: 33216217 [TBL] [Abstract][Full Text] [Related]
12. Using Sensors and Unmanned Aircraft Systems for High-Throughput Phenotyping of Biomass in Perennial Ryegrass Breeding Trials. Wang J; Badenhorst P; Phelan A; Pembleton L; Shi F; Cogan N; Spangenberg G; Smith K Front Plant Sci; 2019; 10():1381. PubMed ID: 31737010 [TBL] [Abstract][Full Text] [Related]
13. Integrating satellite and unmanned aircraft system (UAS) imagery to model livestock population dynamics in the Longbao Wetland National Nature Reserve, China. Wang D; Song Q; Liao X; Ye H; Shao Q; Fan J; Cong N; Xin X; Yue H; Zhang H Sci Total Environ; 2020 Dec; 746():140327. PubMed ID: 32768776 [TBL] [Abstract][Full Text] [Related]
14. High-throughput plant phenotyping: a role for metabolomics? Hall RD; D'Auria JC; Silva Ferreira AC; Gibon Y; Kruszka D; Mishra P; van de Zedde R Trends Plant Sci; 2022 Jun; 27(6):549-563. PubMed ID: 35248492 [TBL] [Abstract][Full Text] [Related]
15. Phenotyping: New Windows into the Plant for Breeders. Watt M; Fiorani F; Usadel B; Rascher U; Muller O; Schurr U Annu Rev Plant Biol; 2020 Apr; 71():689-712. PubMed ID: 32097567 [TBL] [Abstract][Full Text] [Related]
16. Image-Based High-Throughput Phenotyping in Horticultural Crops. Abebe AM; Kim Y; Kim J; Kim SL; Baek J Plants (Basel); 2023 May; 12(10):. PubMed ID: 37653978 [TBL] [Abstract][Full Text] [Related]
17. Applications of UAS in Crop Biomass Monitoring: A Review. Wang T; Liu Y; Wang M; Fan Q; Tian H; Qiao X; Li Y Front Plant Sci; 2021; 12():616689. PubMed ID: 33897719 [TBL] [Abstract][Full Text] [Related]
18. Computer vision-based phenotyping for improvement of plant productivity: a machine learning perspective. Mochida K; Koda S; Inoue K; Hirayama T; Tanaka S; Nishii R; Melgani F Gigascience; 2019 Jan; 8(1):. PubMed ID: 30520975 [TBL] [Abstract][Full Text] [Related]
19. Remote sensing for field pea yield estimation: A study of multi-scale data fusion approaches in phenomics. Marzougui A; McGee RJ; Van Vleet S; Sankaran S Front Plant Sci; 2023; 14():1111575. PubMed ID: 37152173 [TBL] [Abstract][Full Text] [Related]
20. Elucidating Sorghum Biomass, Nitrogen and Chlorophyll Contents With Spectral and Morphological Traits Derived From Unmanned Aircraft System. Li J; Shi Y; Veeranampalayam-Sivakumar AN; Schachtman DP Front Plant Sci; 2018; 9():1406. PubMed ID: 30333843 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]