These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
128 related articles for article (PubMed ID: 3419563)
1. Protein kinase activity in canine basilar arteries after subarachnoid hemorrhage. Suzuki Y; Shibuya M; Takayasu M; Asano T; Ikegaki I; Satoh S; Saito M; Hidaka H Neurosurgery; 1988 Jun; 22(6 Pt 1):1028-31. PubMed ID: 3419563 [TBL] [Abstract][Full Text] [Related]
2. Activation of protein kinases in canine basilar artery in vasospasm. Fujikawa H; Tani E; Yamaura I; Ozaki I; Miyaji K; Sato M; Takahashi K; Imajoh-Ohmi S J Cereb Blood Flow Metab; 1999 Jan; 19(1):44-52. PubMed ID: 9886354 [TBL] [Abstract][Full Text] [Related]
3. Activation of Rho-associated kinase during augmented contraction of the basilar artery to serotonin after subarachnoid hemorrhage. Watanabe Y; Faraci FM; Heistad DD Am J Physiol Heart Circ Physiol; 2005 Jun; 288(6):H2653-8. PubMed ID: 15665056 [TBL] [Abstract][Full Text] [Related]
4. Impairment in biochemical level of arterial dilative capability of a cyclic nucleotides-dependent pathway by induced vasospasm in the canine basilar artery. Todo H; Ohta S; Wang J; Ichikawa H; Ohue S; Kumon Y; Sakaki S J Cereb Blood Flow Metab; 1998 Jul; 18(7):808-17. PubMed ID: 9663510 [TBL] [Abstract][Full Text] [Related]
5. Changes in Ca(++)-ATPase activity in smooth-muscle cell membranes of the canine basilar artery with experimental subarachnoid hemorrhage. Wang J; Ohta S; Sakaki S; Araki N; Matsuda S; Sakanaka M J Neurosurg; 1994 Feb; 80(2):269-75. PubMed ID: 8283266 [TBL] [Abstract][Full Text] [Related]
6. Protein synthesis and immunoreactivities of contraction-related proteins in smooth muscle cells of canine basilar artery after experimental subarachnoid hemorrhage. Oka Y; Ohta S; Todo H; Kohno K; Kumon Y; Sakaki S J Cereb Blood Flow Metab; 1996 Nov; 16(6):1335-44. PubMed ID: 8898709 [TBL] [Abstract][Full Text] [Related]
7. Multifaceted effects of selective inhibitor of phosphodiesterase III, cilostazol, for cerebral vasospasm after subarachnoid hemorrhage in a dog model. Yamaguchi-Okada M; Nishizawa S; Mizutani A; Namba H Cerebrovasc Dis; 2009; 28(2):135-42. PubMed ID: 19506373 [TBL] [Abstract][Full Text] [Related]
8. Impairement of vascular reactivity and changes in intracellular calcium and calmodulin levels of smooth muscle cells in canine basilar arteries after subarachnoid hemorrhage. Sakaki S; Ohue S; Kohno K; Takeda S Neurosurgery; 1989 Nov; 25(5):753-61. PubMed ID: 2586728 [TBL] [Abstract][Full Text] [Related]
9. Role of protein kinase C in the pathogenesis of cerebral vasospasm after subarachnoid hemorrhage. Sako M; Nishihara J; Ohta S; Wang J; Sakaki S J Cereb Blood Flow Metab; 1993 Mar; 13(2):247-54. PubMed ID: 8436616 [TBL] [Abstract][Full Text] [Related]
10. Type V phosphodiesterase expression in cerebral arteries with vasospasm after subarachnoid hemorrhage in a canine model. Inoha S; Inamura T; Ikezaki K; Nakamizo A; Amano T; Fukui M Neurol Res; 2002 Sep; 24(6):607-12. PubMed ID: 12238630 [TBL] [Abstract][Full Text] [Related]
11. Combined effect of L-arginine and superoxide dismutase on the spastic basilar artery after subarachnoid hemorrhage in dogs. Kajita Y; Suzuki Y; Oyama H; Tanazawa T; Takayasu M; Shibuya M; Sugita K J Neurosurg; 1994 Mar; 80(3):476-83. PubMed ID: 8113861 [TBL] [Abstract][Full Text] [Related]
12. Role of oxidized LDL and lectin-like oxidized LDL receptor-1 in cerebral vasospasm after subarachnoid hemorrhage. Matsuda N; Ohkuma H; Naraoka M; Munakata A; Shimamura N; Asano K J Neurosurg; 2014 Sep; 121(3):621-30. PubMed ID: 24949677 [TBL] [Abstract][Full Text] [Related]
13. Direct evidence for a key role of protein kinase C in the development of vasospasm after subarachnoid hemorrhage. Nishizawa S; Nezu N; Uemura K J Neurosurg; 1992 Apr; 76(4):635-9. PubMed ID: 1545258 [TBL] [Abstract][Full Text] [Related]
14. Biomechanical and phenotypic changes in the vasospastic canine basilar artery after subarachnoid hemorrhage. Yamaguchi-Okada M; Nishizawa S; Koide M; Nonaka Y J Appl Physiol (1985); 2005 Nov; 99(5):2045-52. PubMed ID: 16051708 [TBL] [Abstract][Full Text] [Related]
15. Expression and function of inwardly rectifying potassium channels after experimental subarachnoid hemorrhage. Weyer GW; Jahromi BS; Aihara Y; Agbaje-Williams M; Nikitina E; Zhang ZD; Macdonald RL J Cereb Blood Flow Metab; 2006 Mar; 26(3):382-91. PubMed ID: 16079788 [TBL] [Abstract][Full Text] [Related]
16. Inducible cyclooxygenase expression in canine basilar artery after experimental subarachnoid hemorrhage. Osuka K; Suzuki Y; Watanabe Y; Takayasu M; Yoshida J Stroke; 1998 Jun; 29(6):1219-22. PubMed ID: 9626297 [TBL] [Abstract][Full Text] [Related]
17. Inhibitory effects of eicosapentaenoic acid on chronic cerebral vasospasm after subarachnoid hemorrhage: possible involvement of a sphingosylphosphorylcholine-rho-kinase pathway. Shirao S; Fujisawa H; Kudo A; Kurokawa T; Yoneda H; Kunitsugu I; Ogasawara K; Soma M; Kobayashi S; Ogawa A; Suzuki M Cerebrovasc Dis; 2008; 26(1):30-7. PubMed ID: 18511869 [TBL] [Abstract][Full Text] [Related]
18. Nitric oxide synthase and guanylate cyclase levels in canine basilar artery after subarachnoid hemorrhage. Kasuya H; Weir BK; Nakane M; Pollock JS; Johns L; Marton LS; Stefansson K J Neurosurg; 1995 Feb; 82(2):250-5. PubMed ID: 7529302 [TBL] [Abstract][Full Text] [Related]
19. [Effects of Lidocaine on the Rho/ROCK Signal Transduction of the Posterior Basilar Artery in Rabbit SAH]. Chen J; Ding H; Fu YJ; Zhang SS; Shi XQ Sichuan Da Xue Xue Bao Yi Xue Ban; 2018 Jul; 49(4):556-559. PubMed ID: 30378309 [TBL] [Abstract][Full Text] [Related]
20. Role of ERK1/2 and vascular cell proliferation in cerebral vasospasm after experimental subarachnoid hemorrhage. Chen D; Chen JJ; Yin Q; Guan JH; Liu YH Acta Neurochir (Wien); 2009 Sep; 151(9):1127-34. PubMed ID: 19444374 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]