BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 34195678)

  • 1. A muscle fatigue-like contractile decline was recapitulated using skeletal myotubes from Duchenne muscular dystrophy patient-derived iPSCs.
    Uchimura T; Asano T; Nakata T; Hotta A; Sakurai H
    Cell Rep Med; 2021 Jun; 2(6):100298. PubMed ID: 34195678
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Acute conversion of patient-derived Duchenne muscular dystrophy iPSC into myotubes reveals constitutive and inducible over-activation of TGFβ-dependent pro-fibrotic signaling.
    Caputo L; Granados A; Lenzi J; Rosa A; Ait-Si-Ali S; Puri PL; Albini S
    Skelet Muscle; 2020 May; 10(1):13. PubMed ID: 32359374
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Early pathogenesis of Duchenne muscular dystrophy modelled in patient-derived human induced pluripotent stem cells.
    Shoji E; Sakurai H; Nishino T; Nakahata T; Heike T; Awaya T; Fujii N; Manabe Y; Matsuo M; Sehara-Fujisawa A
    Sci Rep; 2015 Aug; 5():12831. PubMed ID: 26290039
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Contractile Activity of Myotubes Derived from Human Induced Pluripotent Stem Cells: A Model of Duchenne Muscular Dystrophy.
    Yoshioka K; Ito A; Horie M; Ikeda K; Kataoka S; Sato K; Yoshigai T; Sakurai H; Hotta A; Kawabe Y; Kamihira M
    Cells; 2021 Sep; 10(10):. PubMed ID: 34685536
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Single CRISPR-Cas9 Deletion Strategy that Targets the Majority of DMD Patients Restores Dystrophin Function in hiPSC-Derived Muscle Cells.
    Young CS; Hicks MR; Ermolova NV; Nakano H; Jan M; Younesi S; Karumbayaram S; Kumagai-Cresse C; Wang D; Zack JA; Kohn DB; Nakano A; Nelson SF; Miceli MC; Spencer MJ; Pyle AD
    Cell Stem Cell; 2016 Apr; 18(4):533-40. PubMed ID: 26877224
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Precise correction of the dystrophin gene in duchenne muscular dystrophy patient induced pluripotent stem cells by TALEN and CRISPR-Cas9.
    Li HL; Fujimoto N; Sasakawa N; Shirai S; Ohkame T; Sakuma T; Tanaka M; Amano N; Watanabe A; Sakurai H; Yamamoto T; Yamanaka S; Hotta A
    Stem Cell Reports; 2015 Jan; 4(1):143-154. PubMed ID: 25434822
    [TBL] [Abstract][Full Text] [Related]  

  • 7. De novo revertant fiber formation and therapy testing in a 3D culture model of Duchenne muscular dystrophy skeletal muscle.
    Ebrahimi M; Lad H; Fusto A; Tiper Y; Datye A; Nguyen CT; Jacques E; Moyle LA; Nguyen T; Musgrave B; Chávez-Madero C; Bigot A; Chen C; Turner S; Stewart BA; Pegoraro E; Vitiello L; Gilbert PM
    Acta Biomater; 2021 Sep; 132():227-244. PubMed ID: 34048976
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanotopography-responsive myotube alignment and orientation as a sensitive phenotypic biomarker for Duchenne Muscular Dystrophy.
    Xu B; Magli A; Anugrah Y; Koester SJ; Perlingeiro RCR; Shen W
    Biomaterials; 2018 Nov; 183():54-66. PubMed ID: 30149230
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prednisolone rescues Duchenne muscular dystrophy phenotypes in human pluripotent stem cell-derived skeletal muscle in vitro.
    Al Tanoury Z; Zimmerman JF; Rao J; Sieiro D; McNamara HM; Cherrier T; Rodríguez-delaRosa A; Hick-Colin A; Bousson F; Fugier-Schmucker C; Marchiano F; Habermann B; Chal J; Nesmith AP; Gapon S; Wagner E; Gupta VA; Bassel-Duby R; Olson EN; Cohen AE; Parker KK; Pourquié O
    Proc Natl Acad Sci U S A; 2021 Jul; 118(28):. PubMed ID: 34260377
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dantrolene enhances antisense-mediated exon skipping in human and mouse models of Duchenne muscular dystrophy.
    Kendall GC; Mokhonova EI; Moran M; Sejbuk NE; Wang DW; Silva O; Wang RT; Martinez L; Lu QL; Damoiseaux R; Spencer MJ; Nelson SF; Miceli MC
    Sci Transl Med; 2012 Dec; 4(164):164ra160. PubMed ID: 23241744
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of Mini-Dystrophin on Dystrophin-Deficient, Human Skeletal Muscle-Derived Cells.
    Meng J; Counsell J; Morgan JE
    Int J Mol Sci; 2020 Sep; 21(19):. PubMed ID: 32998454
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Novel CRISPR-Cas9 Strategy to Target DYSTROPHIN Mutations Downstream of Exon 44 in Patient-Specific DMD iPSCs.
    Dhoke NR; Kim H; Azzag K; Crist SB; Kiley J; Perlingeiro RCR
    Cells; 2024 Jun; 13(11):. PubMed ID: 38891104
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Skeletal Muscle Differentiation on a Chip Shows Human Donor Mesoangioblasts' Efficiency in Restoring Dystrophin in a Duchenne Muscular Dystrophy Model.
    Serena E; Zatti S; Zoso A; Lo Verso F; Tedesco FS; Cossu G; Elvassore N
    Stem Cells Transl Med; 2016 Dec; 5(12):1676-1683. PubMed ID: 27502519
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mimicking sarcolemmal damage
    Tejedera-Villafranca A; Montolio M; Ramón-Azcón J; Fernández-Costa JM
    Biofabrication; 2023 Sep; 15(4):. PubMed ID: 37725998
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional significance of gain-of-function H19 lncRNA in skeletal muscle differentiation and anti-obesity effects.
    Li Y; Zhang Y; Hu Q; Egranov SD; Xing Z; Zhang Z; Liang K; Ye Y; Pan Y; Chatterjee SS; Mistretta B; Nguyen TK; Hawke DH; Gunaratne PH; Hung MC; Han L; Yang L; Lin C
    Genome Med; 2021 Aug; 13(1):137. PubMed ID: 34454586
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CRISPR-mediated correction of skeletal muscle Ca
    Morera C; Kim J; Paredes-Redondo A; Nobles M; Rybin D; Moccia R; Kowala A; Meng J; Garren S; Liu P; Morgan JE; Muntoni F; Christoforou N; Owens J; Tinker A; Lin YY
    Neuromuscul Disord; 2022 Dec; 32(11-12):908-922. PubMed ID: 36418198
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Establishment of a Duchenne muscular dystrophy patient-derived induced pluripotent stem cell line carrying a deletion of exons 51-53 of the dystrophin gene (CCMi003-A).
    Rovina D; Castiglioni E; Farini A; Bellichi M; Gervasini C; Paganini S; Di Segni M; Santoro R; Torrente Y; Pompilio G; Gowran A
    Stem Cell Res; 2019 Oct; 40():101544. PubMed ID: 31465894
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Absence of full-length dystrophin impairs normal maturation and contraction of cardiomyocytes derived from human-induced pluripotent stem cells.
    Pioner JM; Guan X; Klaiman JM; Racca AW; Pabon L; Muskheli V; Macadangdang J; Ferrantini C; Hoopmann MR; Moritz RL; Kim DH; Tesi C; Poggesi C; Murry CE; Childers MK; Mack DL; Regnier M
    Cardiovasc Res; 2020 Feb; 116(2):368-382. PubMed ID: 31049579
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Targeted addition of mini-dystrophin into rDNA locus of Duchenne muscular dystrophy patient-derived iPSCs.
    Zeng B; Zhou M; Liu B; Shen F; Xiao R; Su J; Hu Z; Zhang Y; Gu A; Wu L; Liu X; Liang D
    Biochem Biophys Res Commun; 2021 Mar; 545():40-45. PubMed ID: 33540285
    [TBL] [Abstract][Full Text] [Related]  

  • 20. ERBB3 and NGFR mark a distinct skeletal muscle progenitor cell in human development and hPSCs.
    Hicks MR; Hiserodt J; Paras K; Fujiwara W; Eskin A; Jan M; Xi H; Young CS; Evseenko D; Nelson SF; Spencer MJ; Handel BV; Pyle AD
    Nat Cell Biol; 2018 Jan; 20(1):46-57. PubMed ID: 29255171
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.