These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
199 related articles for article (PubMed ID: 34195782)
1. NELL2 modulates cell proliferation and apoptosis via ERK pathway in the development of benign prostatic hyperplasia. Liu J; Liu D; Zhang X; Li Y; Fu X; He W; Li M; Chen P; Zeng G; DiSanto ME; Wang X; Zhang X Clin Sci (Lond); 2021 Jul; 135(13):1591-1608. PubMed ID: 34195782 [TBL] [Abstract][Full Text] [Related]
2. Upregulated bone morphogenetic protein 5 enhances proliferation and epithelial-mesenchymal transition process in benign prostatic hyperplasia via BMP/Smad signaling pathway. Liu D; Liu J; Li Y; Liu H; Hassan HM; He W; Li M; Zhou Y; Fu X; Zhan J; Wang Z; Yang S; Chen P; Xu D; Wang X; DiSanto ME; Zeng G; Zhang X Prostate; 2021 Dec; 81(16):1435-1449. PubMed ID: 34553788 [TBL] [Abstract][Full Text] [Related]
3. Glutathione Peroxidase 3 induced mitochondria-mediated apoptosis via AMPK /ERK1/2 pathway and resisted autophagy-related ferroptosis via AMPK/mTOR pathway in hyperplastic prostate. Li Y; Zhou Y; Liu D; Wang Z; Qiu J; Zhang J; Chen P; Zeng G; Guo Y; Wang X; DiSanto ME; Zhang X J Transl Med; 2023 Aug; 21(1):575. PubMed ID: 37633909 [TBL] [Abstract][Full Text] [Related]
4. Mechanism of RhoA regulating benign prostatic hyperplasia: RhoA-ROCK-β-catenin signaling axis and static & dynamic dual roles. Shan S; Su M; Li Y; Wang Z; Liu D; Zhou Y; Fu X; Yang S; Zhang J; Qiu J; Liu H; Zeng G; Chen P; Wang X; DiSanto ME; Guo Y; Zhang X Mol Med; 2023 Oct; 29(1):139. PubMed ID: 37864185 [TBL] [Abstract][Full Text] [Related]
5. STEAP4 modulates cell proliferation and oxidative stress in benign prostatic hyperplasia. Liu J; Zhou W; Yang L; Li Y; Qiu J; Fu X; Ren P; Guo F; Zhou Y; Liu J; Chen P; DiSanto ME; Zhang X Cell Signal; 2024 Jan; 113():110933. PubMed ID: 37866665 [TBL] [Abstract][Full Text] [Related]
6. M2a macrophage can rescue proliferation and gene expression of benign prostate hyperplasia epithelial and stroma cells from insulin-like growth factor 1 knockdown. Qian Q; He W; Liu D; Yin J; Ye L; Chen P; Xu D; Liu J; Li Y; Zeng G; Li M; Wu Z; Zhang Y; Wang X; DiSanto ME; Zhang X Prostate; 2021 Jun; 81(9):530-542. PubMed ID: 33861464 [TBL] [Abstract][Full Text] [Related]
7. Chrysophanic acid reduces testosterone-induced benign prostatic hyperplasia in rats by suppressing 5α-reductase and extracellular signal-regulated kinase. Youn DH; Park J; Kim HL; Jung Y; Kang J; Jeong MY; Sethi G; Seok Ahn K; Um JY Oncotarget; 2017 Feb; 8(6):9500-9512. PubMed ID: 27880726 [TBL] [Abstract][Full Text] [Related]
8. Changes in the expression and functional activities of Myosin II isoforms in human hyperplastic prostate. He W; Wang X; Zhan D; Li M; Wang Q; Liu J; Liu D; Fu X; Qian Q; Li Y; Chen P; Zeng G; Wang X; DiSanto ME; Zhang X Clin Sci (Lond); 2021 Jan; 135(1):167-183. PubMed ID: 33393635 [TBL] [Abstract][Full Text] [Related]
9. Identification and functional activity of Nik related kinase (NRK) in benign hyperplastic prostate. He W; Tian Z; Dong B; Cao Y; Hu W; Wu P; Yu L; Zhang X; Guo S J Transl Med; 2024 Mar; 22(1):255. PubMed ID: 38459501 [TBL] [Abstract][Full Text] [Related]
10. Incaspitolide A extracted from Carpesium cernuum induces apoptosis in vitro via the PI3K/AKT pathway in benign prostatic hyperplasia. Chen X; Song J; Yuan D; Rao Q; Jiang K; Feng S; Zhu G; Yan C; Li Y; Zhu J Biosci Rep; 2021 Jun; 41(6):. PubMed ID: 34100062 [TBL] [Abstract][Full Text] [Related]
11. Simvastatin Improves Benign Prostatic Hyperplasia: Role of Peroxisome-Proliferator-Activated Receptor-γ and Classic WNT/β-Catenin Pathway. Wang Z; Yang S; Li Y; Zhou Y; Liu D; Liu J; DiSanto ME; Zhang X Int J Mol Sci; 2023 Mar; 24(5):. PubMed ID: 36902342 [TBL] [Abstract][Full Text] [Related]
12. Regulation of cell proliferation through a KIT-mediated mechanism in benign prostatic hyperplasia. Imura M; Kojima Y; Kubota Y; Hamakawa T; Yasui T; Sasaki S; Hayashi Y; Kohri K Prostate; 2012 Oct; 72(14):1506-13. PubMed ID: 22314612 [TBL] [Abstract][Full Text] [Related]
13. S100A4 modulates cell proliferation, apoptosis and fibrosis in the hyperplastic prostate. Yang L; Liu J; Yin J; Li Y; Liu J; Liu D; Wang Z; DiSanto ME; Zhang W; Zhang X Int J Biochem Cell Biol; 2024 Apr; 169():106551. PubMed ID: 38360265 [TBL] [Abstract][Full Text] [Related]
14. GREM1 knockdown regulates the proliferation, apoptosis and EMT of benign prostatic hyperplasia by suppressing the STAT3/c-Myc signaling. Sun X; Jiang M; Wang Z; Xu C; Ma Z Tissue Cell; 2024 Feb; 86():102231. PubMed ID: 37931534 [TBL] [Abstract][Full Text] [Related]
15. Glucose-regulated protein 78 modulates cell growth, epithelial-mesenchymal transition, and oxidative stress in the hyperplastic prostate. Fu X; Liu J; Liu D; Zhou Y; Guo Y; Wang Z; Yang S; He W; Chen P; Wang X; DiSanto ME; Zhang X Cell Death Dis; 2022 Jan; 13(1):78. PubMed ID: 35075122 [TBL] [Abstract][Full Text] [Related]
16. Apoptotic versus proliferative activities in human benign prostatic hyperplasia. Kyprianou N; Tu H; Jacobs SC Hum Pathol; 1996 Jul; 27(7):668-75. PubMed ID: 8698310 [TBL] [Abstract][Full Text] [Related]
18. Regulation of proliferation/apoptosis equilibrium by mitogen-activated protein kinases in normal, hyperplastic, and carcinomatous human prostate. Royuela M; Arenas MI; Bethencourt FR; Sánchez-Chapado M; Fraile B; Paniagua R Hum Pathol; 2002 Mar; 33(3):299-306. PubMed ID: 11979370 [TBL] [Abstract][Full Text] [Related]
19. Upregulated Interleukin 21 Receptor Enhances Proliferation and Epithelial-Mesenchymal Transition Process in Benign Prostatic Hyperplasia. Xu D; Chen P; Xiao H; Wang X; DiSanto ME; Zhang X Front Endocrinol (Lausanne); 2019; 10():4. PubMed ID: 30728806 [No Abstract] [Full Text] [Related]
20. TUG1 promotes the development of prostate cancer by regulating RLIM. Guo BH; Zhao Q; Li HY Eur Rev Med Pharmacol Sci; 2019 Mar; 23(5):1926-1933. PubMed ID: 30915735 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]