These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
176 related articles for article (PubMed ID: 34195881)
1. Effect of Chemical Penetration Enhancer-Adhesive Interaction on Drug Release from Transdermal Patch: Mechanism Study Based on FT-IR Spectroscopy, Luo Z; Liu C; Quan P; Zhang Y; Fang L AAPS PharmSciTech; 2021 Jun; 22(5):198. PubMed ID: 34195881 [TBL] [Abstract][Full Text] [Related]
2. Enhanced Drug Loading in the Drug-in-Adhesive Transdermal Patch Utilizing a Drug-Ionic Liquid Strategy: Insight into the Role of Ionic Hydrogen Bonding. Yang D; Liu C; Piao H; Quan P; Fang L Mol Pharm; 2021 Mar; 18(3):1157-1166. PubMed ID: 33504154 [TBL] [Abstract][Full Text] [Related]
3. Unconventional Passive Enhancement of Transdermal Drug Delivery: toward a Mechanistic Understanding of Penetration Enhancers Releasing from Acrylic Pressure-Sensitive Adhesive of Patches. Zeng L; Song W; He W; Zhang J; Wang Y; Bian J; Mao Z; Quan D; Liu J Pharm Res; 2020 Aug; 37(9):169. PubMed ID: 32794010 [TBL] [Abstract][Full Text] [Related]
4. Development of Tizanidine Drug-in-Adhesive Patch: Molecular Mechanism of Permeation Enhancer on Regulating Miscibility and Drug Release by Affecting the Status of Ion-Pair in Polymer Matrix. Zhong T; Ruan J; Liu C; Quan P; Fang L J Pharm Sci; 2020 Aug; 109(8):2501-2511. PubMed ID: 32387424 [TBL] [Abstract][Full Text] [Related]
5. Probing the role of chemical enhancers in facilitating drug release from patches: Mechanistic insights based on FT-IR spectroscopy, molecular modeling and thermal analysis. Song W; Quan P; Li S; Liu C; Lv S; Zhao Y; Fang L J Control Release; 2016 Apr; 227():13-22. PubMed ID: 26896738 [TBL] [Abstract][Full Text] [Related]
6. Investigation of Effect of Isopropyl Palmitate on Drug Release from Transdermal Patch and Molecular Dynamics Study. Ruan J; Wan X; Quan P; Liu C; Fang L AAPS PharmSciTech; 2019 Apr; 20(5):174. PubMed ID: 31028490 [TBL] [Abstract][Full Text] [Related]
7. Sustainable and efficient skin absorption behaviour of transdermal drug: The effect of the release kinetics of permeation enhancer. Ruan J; Liu C; Song H; Zhong T; Quan P; Fang L Int J Pharm; 2022 Jan; 612():121377. PubMed ID: 34915145 [TBL] [Abstract][Full Text] [Related]
8. Drug in Adhesive Patch of Zolmitriptan: Formulation and In vitro /In vivo Correlation. Liu C; Fang L AAPS PharmSciTech; 2015 Dec; 16(6):1245-53. PubMed ID: 25771739 [TBL] [Abstract][Full Text] [Related]
9. Realizing zero-order controlled transdermal drug permeation through competing doubly ionic H-bond in patch. Zhang S; Zhang Q; Xu R; Ma J; Fang L Int J Pharm; 2023 Oct; 645():123410. PubMed ID: 37703958 [TBL] [Abstract][Full Text] [Related]
10. Development and in vitro evaluation of pressure sensitive adhesive patch for the transdermal delivery of galantamine: Effect of penetration enhancers and crystallization inhibition. Ameen D; Michniak-Kohn B Eur J Pharm Biopharm; 2019 Jun; 139():262-271. PubMed ID: 30981946 [TBL] [Abstract][Full Text] [Related]
11. A systematic approach to determination of permeation enhancer action efficacy and sites: Molecular mechanism investigated by quantitative structure-activity relationship. Yang D; Liu C; Quan P; Fang L J Control Release; 2020 Jun; 322():1-12. PubMed ID: 32169535 [TBL] [Abstract][Full Text] [Related]
12. Design of a tulobuterol patch with improved mechanical properties: effect of transdermal permeation enhancers on the release process of metal ligand-based acrylic pressure-sensitive adhesives. Nan L; Song H; Wang H; Mi R; Wang X; Fang L Drug Deliv Transl Res; 2024 Mar; 14(3):802-811. PubMed ID: 38082031 [TBL] [Abstract][Full Text] [Related]
13. Mechanistic insights of the controlled release properties of amide adhesive and hydroxyl adhesive. Luo Z; Wan X; Liu C; Fang L Eur J Pharm Sci; 2018 Jul; 119():13-21. PubMed ID: 29625213 [TBL] [Abstract][Full Text] [Related]
14. Mechanistic insights of the enhancement effect of sorbitan monooleate on olanzapine transdermal patch both in release and percutaneous absorption processes. Li N; Quan P; Wan X; Liu C; Liu X; Fang L Eur J Pharm Sci; 2017 Sep; 107():138-147. PubMed ID: 28693956 [TBL] [Abstract][Full Text] [Related]
15. Transdermal enhancement strategy of ketoprofen and teriflunomide: The effect of enhanced drug-drug intermolecular interaction by permeation enhancer on drug release of compound transdermal patch. Liu C; Guan Y; Tian Q; Shi X; Fang L Int J Pharm; 2019 Dec; 572():118800. PubMed ID: 31678378 [TBL] [Abstract][Full Text] [Related]
16. Investigation of molecular mobility of pressure-sensitive-adhesive in oxybutynin patch in vitro and in vivo: Effect of sorbitan monooleate on drug release and patch mechanical property. Wang W; Liu C; Luo Z; Wan X; Fang L Eur J Pharm Sci; 2018 Sep; 122():116-124. PubMed ID: 29928984 [TBL] [Abstract][Full Text] [Related]
17. Investigation of the permeation enhancer strategy on benzoylaconitine transdermal patch: the relationship between transdermal enhancement strength and physicochemical properties of permeation enhancer. Liu C; Farah N; Weng W; Jiao B; Shen M; Fang L Eur J Pharm Sci; 2019 Oct; 138():105009. PubMed ID: 31306781 [TBL] [Abstract][Full Text] [Related]
18. Probing the Role of Ion-Pair Strategy in Controlling Dexmedetomidine Penetrate Through Drug-in-Adhesive Patch: Mechanistic Insights Based on Release and Percutaneous Absorption Process. Wang H; Tian Q; Quan P; Liu C; Fang L AAPS PharmSciTech; 2019 Nov; 21(1):4. PubMed ID: 31728769 [TBL] [Abstract][Full Text] [Related]
19. A systemic evaluation of drug in acrylic pressure sensitive adhesive patch in vitro and in vivo: The roles of intermolecular interaction and adhesive mobility variation in drug controlled release. Liu C; Quan P; Li S; Zhao Y; Fang L J Control Release; 2017 Apr; 252():83-94. PubMed ID: 28274741 [TBL] [Abstract][Full Text] [Related]
20. Mechanistic insights of different release behaviors dominated by drug physicochemical properties in polyisobutylene pressure sensitive adhesive. Ding D; Liu C; Zhang Y; Xu W; Cai Y; Zhong T; Fang L Int J Pharm; 2023 Jan; 630():122416. PubMed ID: 36450335 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]