BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 34196182)

  • 21. A squalene synthase protein degradation method for improved sesquiterpene production in Saccharomyces cerevisiae.
    Peng B; Plan MR; Chrysanthopoulos P; Hodson MP; Nielsen LK; Vickers CE
    Metab Eng; 2017 Jan; 39():209-219. PubMed ID: 27939849
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Construction of a novel anaerobic pathway in Escherichia coli for propionate production.
    Li J; Zhu X; Chen J; Zhao D; Zhang X; Bi C
    BMC Biotechnol; 2017 Apr; 17(1):38. PubMed ID: 28407739
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A novel whole-phase succinate fermentation strategy with high volumetric productivity in engineered Escherichia coli.
    Li Y; Li M; Zhang X; Yang P; Liang Q; Qi Q
    Bioresour Technol; 2013 Dec; 149():333-40. PubMed ID: 24125798
    [TBL] [Abstract][Full Text] [Related]  

  • 24. High-Level Patchoulol Biosynthesis in
    Fu X; Zhang F; Ma Y; Hassani D; Peng B; Pan Q; Zhang Y; Deng Z; Liu W; Zhang J; Han L; Chen D; Zhao J; Li L; Sun X; Tang K
    Front Bioeng Biotechnol; 2020; 8():621127. PubMed ID: 33614607
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Metabolic engineering of
    Liu J; Gao C; Chen X; Guo L; Song W; Wu J; Wei W; Liu J; Liu L
    Sheng Wu Gong Cheng Xue Bao; 2023 Jun; 39(6):2375-2389. PubMed ID: 37401599
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Construction and optimization of microbial cell factories for producing cis, cis-muconic acid].
    Song G; Jiang X; Chen W; Peng Y; Lu F; Wang Q
    Sheng Wu Gong Cheng Xue Bao; 2016 Sep; 32(9):1212-1223. PubMed ID: 29022322
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Optimization of continuous purification of recombinant patchoulol synthase from Escherichia coli with membrane adsorbers.
    Brämer C; Ekramzadeh K; Lammers F; Scheper T; Beutel S
    Biotechnol Prog; 2019 Jul; 35(4):e2812. PubMed ID: 30932363
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Escherichia coli genome-scale metabolic gene knockout of lactate dehydrogenase (ldhA), increases succinate production from glycerol.
    Mienda BS
    J Biomol Struct Dyn; 2018 Nov; 36(14):3680-3686. PubMed ID: 29057718
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Metabolic engineering of Escherichia coli for microbial production of L-methionine.
    Huang JF; Liu ZQ; Jin LQ; Tang XL; Shen ZY; Yin HH; Zheng YG
    Biotechnol Bioeng; 2017 Apr; 114(4):843-851. PubMed ID: 27723097
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Engineering Escherichia coli BL21 (DE3) for high-yield production of germacrene A, a precursor of β-elemene via combinatorial metabolic engineering strategies.
    Fordjour E; Liu CL; Hao Y; Sackey I; Yang Y; Liu X; Li Y; Tan T; Bai Z
    Biotechnol Bioeng; 2023 Oct; 120(10):3039-3056. PubMed ID: 37309999
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Fitness of Chassis Cells and Metabolic Pathways for l-Cysteine Overproduction in
    Liu H; Wang Y; Hou Y; Li Z
    J Agric Food Chem; 2020 Dec; 68(50):14928-14937. PubMed ID: 33264003
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Re-engineering Escherichia coli KJ122 to enhance the utilization of xylose and xylose/glucose mixture for efficient succinate production in mineral salt medium.
    Khunnonkwao P; Jantama SS; Kanchanatawee S; Jantama K
    Appl Microbiol Biotechnol; 2018 Jan; 102(1):127-141. PubMed ID: 29079860
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Metabolic engineering of Escherichia coli for the production of phenol from glucose.
    Kim B; Park H; Na D; Lee SY
    Biotechnol J; 2014 May; 9(5):621-9. PubMed ID: 24115680
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Metabolic engineering of Escherichia coli for the synthesis of polyhydroxyalkanoates using acetate as a main carbon source.
    Chen J; Li W; Zhang ZZ; Tan TW; Li ZJ
    Microb Cell Fact; 2018 Jul; 17(1):102. PubMed ID: 29970091
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Current advances of succinate biosynthesis in metabolically engineered Escherichia coli.
    Zhu LW; Tang YJ
    Biotechnol Adv; 2017 Dec; 35(8):1040-1048. PubMed ID: 28939498
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Efficient production of myo-inositol in Escherichia coli through metabolic engineering.
    You R; Wang L; Shi C; Chen H; Zhang S; Hu M; Tao Y
    Microb Cell Fact; 2020 May; 19(1):109. PubMed ID: 32448266
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Doubly deuterium-labeled patchouli alcohol from cyclization of singly labeled [2-(2)H(1)]farnesyl diphosphate catalyzed by recombinant patchoulol synthase.
    Faraldos JA; Wu S; Chappell J; Coates RM
    J Am Chem Soc; 2010 Mar; 132(9):2998-3008. PubMed ID: 20148554
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Enhancing caffeic acid production in Escherichia coli by engineering the biosynthesis pathway and transporter.
    Wang L; Li N; Yu S; Zhou J
    Bioresour Technol; 2023 Jan; 368():128320. PubMed ID: 36379296
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Engineered heterologous FPP synthases-mediated Z,E-FPP synthesis in E. coli.
    Wang C; Zhou J; Jang HJ; Yoon SH; Kim JY; Lee SG; Choi ES; Kim SW
    Metab Eng; 2013 Jul; 18():53-9. PubMed ID: 23608473
    [TBL] [Abstract][Full Text] [Related]  

  • 40. High-level production of l-homoserine using a non-induced, non-auxotrophic Escherichia coli chassis through metabolic engineering.
    Zhang Y; Wei M; Zhao G; Zhang W; Li Y; Lin B; Li Y; Xu Q; Chen N; Zhang C
    Bioresour Technol; 2021 May; 327():124814. PubMed ID: 33592493
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.