These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 34196182)

  • 41. Metabolic engineering of Escherichia coli and in silico comparing of carboxylation pathways for high succinate productivity under aerobic conditions.
    Yang J; Wang Z; Zhu N; Wang B; Chen T; Zhao X
    Microbiol Res; 2014; 169(5-6):432-40. PubMed ID: 24103861
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Efficient phototrophic production of a high-value sesquiterpenoid from the eukaryotic microalga Chlamydomonas reinhardtii.
    Lauersen KJ; Baier T; Wichmann J; Wördenweber R; Mussgnug JH; Hübner W; Huser T; Kruse O
    Metab Eng; 2016 Nov; 38():331-343. PubMed ID: 27474353
    [TBL] [Abstract][Full Text] [Related]  

  • 43. [Construction of cell factories for production of patchoulol in Saccharomyces cerevisiae].
    Guo S; Wang D; Yang TT; Li WH; Li RS; Zhang GW; Zhang XL; Dai ZB
    Zhongguo Zhong Yao Za Zhi; 2023 May; 48(9):2316-2324. PubMed ID: 37282860
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Eliminating side products and increasing succinate yields in engineered strains of Escherichia coli C.
    Jantama K; Zhang X; Moore JC; Shanmugam KT; Svoronos SA; Ingram LO
    Biotechnol Bioeng; 2008 Dec; 101(5):881-93. PubMed ID: 18781696
    [TBL] [Abstract][Full Text] [Related]  

  • 45. In Vivo Validation of In Silico Predicted Metabolic Engineering Strategies in Yeast: Disruption of α-Ketoglutarate Dehydrogenase and Expression of ATP-Citrate Lyase for Terpenoid Production.
    Gruchattka E; Kayser O
    PLoS One; 2015; 10(12):e0144981. PubMed ID: 26701782
    [TBL] [Abstract][Full Text] [Related]  

  • 46. [Succinic acid production from sucrose and sugarcane molasses by metabolically engineered Escherichia coli].
    Li F; Ma J; Wu M; Ji Y; Chen W; Ren X; Jiang M
    Sheng Wu Gong Cheng Xue Bao; 2015 Apr; 31(4):534-41. PubMed ID: 26380410
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Improved production of D-pantothenic acid in Escherichia coli by integrated strain engineering and fermentation strategies.
    Zou S; Zhao K; Tang H; Zhang Z; Zhang B; Liu Z; Zheng Y
    J Biotechnol; 2021 Sep; 339():65-72. PubMed ID: 34352344
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Production of Succinic Acid from Amino Acids in
    Chiang CJ; Hu RC; Huang ZC; Chao YP
    J Agric Food Chem; 2021 Jul; 69(29):8172-8178. PubMed ID: 34282894
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Combining Metabolic and Monoterpene Synthase Engineering for
    Lei D; Qiu Z; Wu J; Qiao B; Qiao J; Zhao GR
    ACS Synth Biol; 2021 Jun; 10(6):1531-1544. PubMed ID: 34100588
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Expression, purification and activity assay of a patchoulol synthase cDNA variant fused to thioredoxin in Escherichia coli.
    Hartwig S; Frister T; Alemdar S; Li Z; Krings U; Berger RG; Scheper T; Beutel S
    Protein Expr Purif; 2014 May; 97():61-71. PubMed ID: 24576659
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Microbial Synthesis of l-Fucose with High Productivity by a Metabolically Engineered
    Meng J; Zhu Y; Chen R; Liu Y; Zhang W; Mu W
    J Agric Food Chem; 2023 Feb; 71(5):2464-2471. PubMed ID: 36700831
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Metabolic engineering of the Stevia rebaudiana ent-kaurene biosynthetic pathway in recombinant Escherichia coli.
    Kong MK; Kang HJ; Kim JH; Oh SH; Lee PC
    J Biotechnol; 2015 Nov; 214():95-102. PubMed ID: 26392384
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Redesign and reconstruction of a steviol-biosynthetic pathway for enhanced production of steviol in Escherichia coli.
    Moon JH; Lee K; Lee JH; Lee PC
    Microb Cell Fact; 2020 Feb; 19(1):20. PubMed ID: 32013995
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Fermentative production and direct extraction of (-)-α-bisabolol in metabolically engineered Escherichia coli.
    Han GH; Kim SK; Yoon PK; Kang Y; Kim BS; Fu Y; Sung BH; Jung HC; Lee DH; Kim SW; Lee SG
    Microb Cell Fact; 2016 Nov; 15(1):185. PubMed ID: 27825357
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Enhanced succinate production from glycerol by engineered Escherichia coli strains.
    Li Q; Wu H; Li Z; Ye Q
    Bioresour Technol; 2016 Oct; 218():217-23. PubMed ID: 27371794
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Genetic engineering of Escherichia coli to improve L-phenylalanine production.
    Liu Y; Xu Y; Ding D; Wen J; Zhu B; Zhang D
    BMC Biotechnol; 2018 Jan; 18(1):5. PubMed ID: 29382315
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Improved succinate production from galactose-rich feedstocks by engineered Escherichia coli under anaerobic conditions.
    Zhu F; San KY; Bennett GN
    Biotechnol Bioeng; 2020 Apr; 117(4):1082-1091. PubMed ID: 31868221
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Central pathway engineering for enhanced succinate biosynthesis from acetate in Escherichia coli.
    Huang B; Yang H; Fang G; Zhang X; Wu H; Li Z; Ye Q
    Biotechnol Bioeng; 2018 Apr; 115(4):943-954. PubMed ID: 29278414
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Biosynthesis of β-carotene in engineered E. coli using the MEP and MVA pathways.
    Yang J; Guo L
    Microb Cell Fact; 2014 Nov; 13():160. PubMed ID: 25403509
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Combinatorial engineering of hybrid mevalonate pathways in Escherichia coli for protoilludene production.
    Yang L; Wang C; Zhou J; Kim SW
    Microb Cell Fact; 2016 Jan; 15():14. PubMed ID: 26785630
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.