These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 34196334)

  • 1. "One-to-three" droplet generation in digital microfluidics for parallel chemiluminescence immunoassays.
    Jin K; Hu C; Hu S; Hu C; Li J; Ma H
    Lab Chip; 2021 Aug; 21(15):2892-2900. PubMed ID: 34196334
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Heterogeneous immunoassays using magnetic beads on a digital microfluidic platform.
    Sista RS; Eckhardt AE; Srinivasan V; Pollack MG; Palanki S; Pamula VK
    Lab Chip; 2008 Dec; 8(12):2188-96. PubMed ID: 19023486
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fully integrated digital microfluidics platform for automated immunoassay; A versatile tool for rapid, specific detection of a wide range of pathogens.
    Coudron L; McDonnell MB; Munro I; McCluskey DK; Johnston ID; Tan CKL; Tracey MC
    Biosens Bioelectron; 2019 Mar; 128():52-60. PubMed ID: 30634074
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bead Number Effect in a Magnetic-Beads-Based Digital Microfluidic Immunoassay.
    Hsu W; Shih YT; Lee MS; Huang HY; Wu WN
    Biosensors (Basel); 2022 May; 12(5):. PubMed ID: 35624641
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Active droplet-array microfluidics-based chemiluminescence immunoassay for point-of-care detection of procalcitonin.
    Huang E; Huang D; Wang Y; Cai D; Luo Y; Zhong Z; Liu D
    Biosens Bioelectron; 2022 Jan; 195():113684. PubMed ID: 34607116
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Droplet-on-a-wristband: chip-to-chip digital microfluidic interfaces between replaceable and flexible electrowetting modules.
    Fan SK; Yang H; Hsu W
    Lab Chip; 2011 Jan; 11(2):343-7. PubMed ID: 20957291
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dielectrowetting manipulation for digital microfluidics: creating, transporting, splitting, and merging of droplets.
    Geng H; Feng J; Stabryla LM; Cho SK
    Lab Chip; 2017 Mar; 17(6):1060-1068. PubMed ID: 28217772
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Self-powered droplet manipulation system for microfluidics based on triboelectric nanogenerator harvesting rotary energy.
    Yu J; Wei X; Guo Y; Zhang Z; Rui P; Zhao Y; Zhang W; Shi S; Wang P
    Lab Chip; 2021 Jan; 21(2):284-295. PubMed ID: 33439205
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of a digital microfluidic platform for point of care testing.
    Sista R; Hua Z; Thwar P; Sudarsan A; Srinivasan V; Eckhardt A; Pollack M; Pamula V
    Lab Chip; 2008 Dec; 8(12):2091-104. PubMed ID: 19023472
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Droplet-based microfluidics.
    Sharma S; Srisa-Art M; Scott S; Asthana A; Cass A
    Methods Mol Biol; 2013; 949():207-30. PubMed ID: 23329446
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Applications of electrowetting-on-dielectric (EWOD) technology for droplet digital PCR.
    Rui X; Song S; Wang W; Zhou J
    Biomicrofluidics; 2020 Nov; 14(6):061503. PubMed ID: 33312327
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Precise Droplet Dispensing in Digital Microfluidics with Dumbbell-Shaped Electrodes.
    Wang W
    Micromachines (Basel); 2022 Mar; 13(3):. PubMed ID: 35334775
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Antifouling digital microfluidics using lubricant infused porous film.
    Geng H; Cho SK
    Lab Chip; 2019 Jun; 19(13):2275-2283. PubMed ID: 31184676
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A droplet-to-digital (D2D) microfluidic device for single cell assays.
    Shih SC; Gach PC; Sustarich J; Simmons BA; Adams PD; Singh S; Singh AK
    Lab Chip; 2015 Jan; 15(1):225-36. PubMed ID: 25354549
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Digital microfluidics-enabled single-molecule detection by printing and sealing single magnetic beads in femtoliter droplets.
    Witters D; Knez K; Ceyssens F; Puers R; Lammertyn J
    Lab Chip; 2013 Jun; 13(11):2047-54. PubMed ID: 23609603
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Single-type reporter multiplexing with A single droplet through bead-based digital microfluidics.
    Lee MS; Chang YC; Huang HY; Hsu W
    J Pharm Biomed Anal; 2022 Sep; 219():114877. PubMed ID: 35717702
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Towards an electrowetting-based digital microfluidic platform for magnetic immunoassays.
    Schaller V; Sanz-Velasco A; Kalabukhov A; Schneiderman JF; Oisjöen F; Jesorka A; Astalan AP; Krozer A; Rusu C; Enoksson P; Winkler D
    Lab Chip; 2009 Dec; 9(23):3433-6. PubMed ID: 19904412
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Digital microfluidics using a differentially polarized interface (DPI) to enhance translational force.
    Razu ME; Kim J
    Lab Chip; 2018 Oct; 18(21):3293-3302. PubMed ID: 30264074
    [TBL] [Abstract][Full Text] [Related]  

  • 19. General digital microfluidic platform manipulating dielectric and conductive droplets by dielectrophoresis and electrowetting.
    Fan SK; Hsieh TH; Lin DY
    Lab Chip; 2009 May; 9(9):1236-42. PubMed ID: 19370242
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Applications of electrowetting-based digital microfluidics in clinical diagnostics.
    Pollack MG; Pamula VK; Srinivasan V; Eckhardt AE
    Expert Rev Mol Diagn; 2011 May; 11(4):393-407. PubMed ID: 21545257
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.