BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 34196470)

  • 1. Unravelling the Hydration Barrier of Lignin Oleate Nanoparticles for Acid- and Base-Catalyzed Functionalization in Dispersion State.
    Moreno A; Liu J; Gueret R; Hadi SE; Bergström L; Slabon A; Sipponen MH
    Angew Chem Int Ed Engl; 2021 Sep; 60(38):20897-20905. PubMed ID: 34196470
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Solvent-Resistant Lignin-Epoxy Hybrid Nanoparticles for Covalent Surface Modification and High-Strength Particulate Adhesives.
    Zou T; Sipponen MH; Henn A; Österberg M
    ACS Nano; 2021 Mar; 15(3):4811-4823. PubMed ID: 33593063
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Breathable Lignin Nanoparticles as Reversible Gas Swellable Nanoreactors.
    Moreno A; Delgado-Lijarcio J; Ronda JC; Cádiz V; Galià M; Sipponen MH; Lligadas G
    Small; 2023 Feb; 19(7):e2205672. PubMed ID: 36478382
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stabilized Lignin Nanoparticles for Versatile Hybrid and Functional Nanomaterials.
    Morsali M; Moreno A; Loukovitou A; Pylypchuk I; Sipponen MH
    Biomacromolecules; 2022 Nov; 23(11):4597-4606. PubMed ID: 36237172
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enzymatically and chemically oxidized lignin nanoparticles for biomaterial applications.
    Mattinen ML; Valle-Delgado JJ; Leskinen T; Anttila T; Riviere G; Sipponen M; Paananen A; Lintinen K; Kostiainen M; Österberg M
    Enzyme Microb Technol; 2018 Apr; 111():48-56. PubMed ID: 29421036
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The preparation of stable spherical alkali lignin nanoparticles with great thermal stability and no cytotoxicity.
    Zhang Z; Belda Marín C; Lefebvre M; Lefebvre C; Terrasson V; Guénin E
    Int J Biol Macromol; 2022 Dec; 222(Pt B):1830-1839. PubMed ID: 36191789
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fabrication of uniform lignin nanoparticles with tunable size for potential wound healing application.
    Du B; Li W; Bai Y; Pan Z; Wang Q; Wang X; Ding H; Lv G; Zhou J
    Int J Biol Macromol; 2022 Aug; 214():170-180. PubMed ID: 35709869
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Aqueous Dispersions of Esterified Lignin Particles for Hydrophobic Coatings.
    Hua Q; Liu LY; Karaaslan MA; Renneckar S
    Front Chem; 2019; 7():515. PubMed ID: 31380356
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Experimental and Simulation Study of the Solvent Effects on the Intrinsic Properties of Spherical Lignin Nanoparticles.
    Zou T; Nonappa N; Khavani M; Vuorte M; Penttilä P; Zitting A; Valle-Delgado JJ; Elert AM; Silbernagl D; Balakshin M; Sammalkorpi M; Österberg M
    J Phys Chem B; 2021 Nov; 125(44):12315-12328. PubMed ID: 34723534
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preparation, characterization and formation mechanism of size-controlled lignin nanoparticles.
    Yang Y; Xu J; Zhou J; Wang X
    Int J Biol Macromol; 2022 Sep; 217():312-320. PubMed ID: 35835305
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Rapid and Reversible pH Control Process for the Formation and Dissociation of Lignin Nanoparticles.
    Xu J; Zhou H; Zheng Y; Li C; Dai L; Xu C; Si C
    ChemSusChem; 2022 Apr; 15(8):e202200449. PubMed ID: 35286763
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lignin valorization: lignin nanoparticles as high-value bio-additive for multifunctional nanocomposites.
    Tian D; Hu J; Bao J; Chandra RP; Saddler JN; Lu C
    Biotechnol Biofuels; 2017; 10():192. PubMed ID: 28747994
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fabrication of spherical lignin nanoparticles using acid-catalyzed condensed lignins.
    Chen Y; Jiang Y; Tian D; Hu J; He J; Yang G; Luo L; Xiao Y; Deng S; Deng O; Zhou W; Shen F
    Int J Biol Macromol; 2020 Dec; 164():3038-3047. PubMed ID: 32853606
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A continuous flow mode with a scalable tubular reactor for the green preparation of stable alkali lignin nanoparticles assisted by ultrasound.
    Assaf I; Zhang Z; Otaola F; Leturia M; Luart D; Terrasson V; Guénin E
    Int J Biol Macromol; 2023 Jul; 243():125106. PubMed ID: 37257546
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Green Synthesis and Characterization of Gold Nanoparticles Using Lignin Nanoparticles.
    Wang B; Yang G; Chen J; Fang G
    Nanomaterials (Basel); 2020 Sep; 10(9):. PubMed ID: 32961968
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vitro evaluation of biodegradable lignin-based nanoparticles for drug delivery and enhanced antiproliferation effect in cancer cells.
    Figueiredo P; Lintinen K; Kiriazis A; Hynninen V; Liu Z; Bauleth-Ramos T; Rahikkala A; Correia A; Kohout T; Sarmento B; Yli-Kauhaluoma J; Hirvonen J; Ikkala O; Kostiainen MA; Santos HA
    Biomaterials; 2017 Mar; 121():97-108. PubMed ID: 28081462
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Delivery of DNA into Human Cells by Functionalized Lignin Nanoparticles.
    Riley MK; Vermerris W
    Materials (Basel); 2022 Jan; 15(1):. PubMed ID: 35009448
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Natural organic UV-absorbent coatings based on cellulose and lignin: designed effects on spectroscopic properties.
    Hambardzumyan A; Foulon L; Chabbert B; Aguié-Béghin V
    Biomacromolecules; 2012 Dec; 13(12):4081-8. PubMed ID: 23088655
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Urushi as a Green Component for Thermally Curable Colloidal Lignin Particles and Hydrophobic Coatings.
    Moreno A; Pylypchuk I; Okahisa Y; Sipponen MH
    ACS Macro Lett; 2023 Jun; 12(6):759-766. PubMed ID: 37212611
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Versatile Route toward Hydrophobically Polymer-Grafted Gold Nanoparticles from Aqueous Dispersions.
    Sindram J; Krüsmann M; Otten M; Pauly T; Nagel-Steger L; Karg M
    J Phys Chem B; 2021 Jul; 125(29):8225-8237. PubMed ID: 34260239
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.