These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 34196553)

  • 21. Relativistic correction scheme for core-level binding energies from GW.
    Keller L; Blum V; Rinke P; Golze D
    J Chem Phys; 2020 Sep; 153(11):114110. PubMed ID: 32962377
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Real-Time Coupled-Cluster Approach for the Cumulant Green's Function.
    Vila FD; Rehr JJ; Kas JJ; Kowalski K; Peng B
    J Chem Theory Comput; 2020 Nov; 16(11):6983-6992. PubMed ID: 33108872
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Numerical solver for first-principles transport calculation based on real-space finite-difference method.
    Iwase S; Hoshi T; Ono T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jun; 91(6):063305. PubMed ID: 26172820
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Self-consistent solution of the Dyson equation for atoms and molecules within a conserving approximation.
    Dahlen NE; van Leeuwen R
    J Chem Phys; 2005 Apr; 122(16):164102. PubMed ID: 15945667
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Band structures in coupled-cluster singles-and-doubles Green's function (GFCCSD).
    Furukawa Y; Kosugi T; Nishi H; Matsushita YI
    J Chem Phys; 2018 May; 148(20):204109. PubMed ID: 29865843
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Assessing GW Approaches for Predicting Core Level Binding Energies.
    van Setten MJ; Costa R; Viñes F; Illas F
    J Chem Theory Comput; 2018 Feb; 14(2):877-883. PubMed ID: 29320628
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Robust relativistic many-body Green's function based approaches for assessing core ionized and excited states.
    Kehry M; Klopper W; Holzer C
    J Chem Phys; 2023 Jul; 159(4):. PubMed ID: 37522402
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Accurate Quasiparticle Spectra from the T-Matrix Self-Energy and the Particle-Particle Random Phase Approximation.
    Zhang D; Su NQ; Yang W
    J Phys Chem Lett; 2017 Jul; 8(14):3223-3227. PubMed ID: 28654275
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Beyond Electrons: Correlation and Self-Energy in Multicomponent Density Functional Theory.
    Holzer C; Franzke YJ
    Chemphyschem; 2024 Jul; 25(13):e202400120. PubMed ID: 38456204
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Green's Function Coupled-Cluster Approach: Simulating Photoelectron Spectra for Realistic Molecular Systems.
    Peng B; Kowalski K
    J Chem Theory Comput; 2018 Aug; 14(8):4335-4352. PubMed ID: 29957945
    [TBL] [Abstract][Full Text] [Related]  

  • 31. One-particle many-body Green's function theory: Algebraic recursive definitions, linked-diagram theorem, irreducible-diagram theorem, and general-order algorithms.
    Hirata S; Doran AE; Knowles PJ; Ortiz JV
    J Chem Phys; 2017 Jul; 147(4):044108. PubMed ID: 28764347
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Excited-State Geometry Optimization of Small Molecules with Many-Body Green's Functions Theory.
    Çaylak O; Baumeier B
    J Chem Theory Comput; 2021 Feb; 17(2):879-888. PubMed ID: 33399447
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Constructing "Full-Frequency" Spectra via Moment Constraints for Coupled Cluster Green's Functions.
    Backhouse OJ; Booth GH
    J Chem Theory Comput; 2022 Nov; 18(11):6622-6636. PubMed ID: 36283078
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Excitation Energies from the Single-Particle Green's Function with the GW Approximation.
    Jin Y; Yang W
    J Phys Chem A; 2019 Apr; 123(14):3199-3204. PubMed ID: 30920830
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Third-order algebraic diagrammatic construction theory for electron attachment and ionization energies: Conventional and Green's function implementation.
    Banerjee S; Sokolov AY
    J Chem Phys; 2019 Dec; 151(22):224112. PubMed ID: 31837698
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Efficient Quasiparticle Determination beyond the Diagonal Approximation via Random Compression.
    Canestraight A; Lei X; Ibrahim KZ; Vlček V
    J Chem Theory Comput; 2024 Jan; 20(2):551-557. PubMed ID: 38175913
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Quasiparticle energy spectra of isolated atoms from coupled-cluster singles and doubles (CCSD): Comparison with exact CI calculations.
    Nishi H; Kosugi T; Furukawa Y; Matsushita YI
    J Chem Phys; 2018 Jul; 149(3):034106. PubMed ID: 30037268
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Finite element based Green's function integral equation for modelling light scattering.
    Li W; Tan D; Xu J; Wang S; Chen Y
    Opt Express; 2019 May; 27(11):16047-16057. PubMed ID: 31163791
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Justifying quasiparticle self-consistent schemes via gradient optimization in Baym-Kadanoff theory.
    Ismail-Beigi S
    J Phys Condens Matter; 2017 Sep; 29(38):385501. PubMed ID: 28593935
    [TBL] [Abstract][Full Text] [Related]  

  • 40. On the Relation between Equation-of-Motion Coupled-Cluster Theory and the GW Approximation.
    Lange MF; Berkelbach TC
    J Chem Theory Comput; 2018 Aug; 14(8):4224-4236. PubMed ID: 30028614
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.