These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 34196554)

  • 1. Nanotube Template-Directed Formation of Strongly Coupled Dye Aggregates with Tunable Exciton Fluorescence Controlled by Switching between J- and H-Type Electronic Coupling.
    Kamalakshan A; Ansilda R; Mandal S
    J Phys Chem B; 2021 Jul; 125(27):7447-7455. PubMed ID: 34196554
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Directed Energy Transfer through DNA-Templated J-Aggregates.
    Mandal S; Zhou X; Lin S; Yan H; Woodbury N
    Bioconjug Chem; 2019 Jul; 30(7):1870-1879. PubMed ID: 30985113
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Davydov Split Aggregates of Cyanine Dyes on Self-Assembled Nanotubes.
    Reddy NR; Rhodes S; Ma Y; Fang J
    Langmuir; 2020 Nov; 36(45):13649-13655. PubMed ID: 33143426
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Large Davydov Splitting and Strong Fluorescence Suppression: An Investigation of Exciton Delocalization in DNA-Templated Holliday Junction Dye Aggregates.
    Cannon BL; Patten LK; Kellis DL; Davis PH; Lee J; Graugnard E; Yurke B; Knowlton WB
    J Phys Chem A; 2018 Mar; 122(8):2086-2095. PubMed ID: 29420037
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Controlling the formation of cyanine dye H- and J-aggregates with cucurbituril hosts in the presence of anionic polyelectrolytes.
    Gadde S; Batchelor EK; Kaifer AE
    Chemistry; 2009 Jun; 15(24):6025-31. PubMed ID: 19402091
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigation of pseudoisocyanine aggregates formed on polystyrenesulfonate.
    Peyratout C; Donath E; Daehne L
    Photochem Photobiol Sci; 2002 Feb; 1(2):87-91. PubMed ID: 12659122
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Understanding Self-Assembled Pseudoisocyanine Dye Aggregates in DNA Nanostructures and Their Exciton Relay Transfer Capabilities.
    Chiriboga M; Diaz SA; Mathur D; Hastman DA; Melinger JS; Veneziano R; Medintz IL
    J Phys Chem B; 2022 Jan; 126(1):110-122. PubMed ID: 34962787
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of organic solvents on J aggregation of pseudoisocyanine dye at mica/water interfaces: morphological transition from three-dimension to two-dimension.
    Yao H; Morita Y; Kimura K
    J Colloid Interface Sci; 2008 Feb; 318(1):116-23. PubMed ID: 17963780
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Luminescence properties of the mixed J-aggregate of oxacyanine dye and thiacyanine dye. Formation of a persistence-type aggregate.
    Yamaguchi A; Kometani N; Yonezawa Y
    J Phys Chem B; 2005 Feb; 109(4):1408-14. PubMed ID: 16851110
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Room-temperature fluorescence lifetime of pseudoisocyanine (PIC) J excitons with various aggregate morphologies in relation to microcavity polariton formation.
    Obara Y; Saitoh K; Oda M; Tani T
    Int J Mol Sci; 2012; 13(5):5851-5865. PubMed ID: 22754336
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chlorophyll J-aggregates: from bioinspired dye stacks to nanotubes, liquid crystals, and biosupramolecular electronics.
    Sengupta S; Würthner F
    Acc Chem Res; 2013 Nov; 46(11):2498-512. PubMed ID: 23865851
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Direct Measurement of Energy Migration in Supramolecular Carbocyanine Dye Nanotubes.
    Clark KA; Krueger EL; Vanden Bout DA
    J Phys Chem Lett; 2014 Jul; 5(13):2274-82. PubMed ID: 26279546
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Self-assembly of J-aggregate nanotubes and their applications for sensing dopamine.
    Liang W; He S; Fang J
    Langmuir; 2014 Jan; 30(3):805-11. PubMed ID: 24397785
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photophysics of J-Aggregate-Mediated Energy Transfer on DNA.
    Banal JL; Kondo T; Veneziano R; Bathe M; Schlau-Cohen GS
    J Phys Chem Lett; 2017 Dec; 8(23):5827-5833. PubMed ID: 29144136
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exciton energy transfer between optically forbidden states of molecular aggregates.
    Kobayashi T; Taneichi T; Takasaka S
    J Chem Phys; 2007 May; 126(19):194705. PubMed ID: 17523826
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exciton Delocalization in Indolenine Squaraine Aggregates Templated by DNA Holliday Junction Scaffolds.
    Mass OA; Wilson CK; Roy SK; Barclay MS; Patten LK; Terpetschnig EA; Lee J; Pensack RD; Yurke B; Knowlton WB
    J Phys Chem B; 2020 Oct; 124(43):9636-9647. PubMed ID: 33052691
    [TBL] [Abstract][Full Text] [Related]  

  • 17. DNA-Templated Aggregates of Strongly Coupled Cyanine Dyes: Nonradiative Decay Governs Exciton Lifetimes.
    Huff JS; Davis PH; Christy A; Kellis DL; Kandadai N; Toa ZSD; Scholes GD; Yurke B; Knowlton WB; Pensack RD
    J Phys Chem Lett; 2019 May; 10(10):2386-2392. PubMed ID: 31010285
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The spectral signatures of Frenkel polarons in H- and J-aggregates.
    Spano FC
    Acc Chem Res; 2010 Mar; 43(3):429-39. PubMed ID: 20014774
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of cellulose acetate as a matrix for aggregation of pseudoisocyanine iodide: absorption and emission studies.
    Brito de Barros R; Ilharco LM
    Spectrochim Acta A Mol Biomol Spectrosc; 2001 Aug; 57(9):1809-17. PubMed ID: 11506031
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Excited-State Lifetimes of DNA-Templated Cyanine Dimer, Trimer, and Tetramer Aggregates: The Role of Exciton Delocalization, Dye Separation, and DNA Heterogeneity.
    Huff JS; Turner DB; Mass OA; Patten LK; Wilson CK; Roy SK; Barclay MS; Yurke B; Knowlton WB; Davis PH; Pensack RD
    J Phys Chem B; 2021 Sep; 125(36):10240-10259. PubMed ID: 34473494
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.