These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 34196558)

  • 21. Divergence of Many-Body Perturbation Theory for Noncovalent Interactions of Large Molecules.
    Nguyen BD; Chen GP; Agee MM; Burow AM; Tang MP; Furche F
    J Chem Theory Comput; 2020 Apr; 16(4):2258-2273. PubMed ID: 32105488
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Evaluation of the Electrostatically Embedded Many-Body Expansion and the Electrostatically Embedded Many-Body Expansion of the Correlation Energy by Application to Low-Lying Water Hexamers.
    Dahlke EE; Leverentz HR; Truhlar DG
    J Chem Theory Comput; 2008 Jan; 4(1):33-41. PubMed ID: 26619977
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Generalized Energy-Based Fragmentation CCSD(T)-F12a Method and Application to the Relative Energies of Water Clusters (H2O)20.
    Wang K; Li W; Li S
    J Chem Theory Comput; 2014 Apr; 10(4):1546-53. PubMed ID: 26580368
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Single determinant N-representability and the kernel energy method applied to water clusters.
    Polkosnik W; Massa L
    J Comput Chem; 2018 Jun; 39(17):1038-1043. PubMed ID: 29064109
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Implementation of the Many-Pair Expansion for Systematically Improving Density Functional Calculations of Molecules.
    Zhu T; de Silva P; Van Voorhis T
    J Chem Theory Comput; 2019 Feb; 15(2):1089-1101. PubMed ID: 30689383
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Making many-body interactions nearly pairwise additive: The polarized many-body expansion approach.
    Veccham SP; Lee J; Head-Gordon M
    J Chem Phys; 2019 Nov; 151(19):194101. PubMed ID: 31757163
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Correlation effects and many-body interactions in water clusters.
    Heßelmann A
    Beilstein J Org Chem; 2018; 14():979-991. PubMed ID: 29977369
    [No Abstract]   [Full Text] [Related]  

  • 28. Benchmark Relative Energies for Large Water Clusters with the Generalized Energy-Based Fragmentation Method.
    Yuan D; Li Y; Ni Z; Pulay P; Li W; Li S
    J Chem Theory Comput; 2017 Jun; 13(6):2696-2704. PubMed ID: 28478670
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Interaction energies of large clusters from many-body expansion.
    Góra U; Podeszwa R; Cencek W; Szalewicz K
    J Chem Phys; 2011 Dec; 135(22):224102. PubMed ID: 22168675
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Machine learning prediction of interaction energies in rigid water clusters.
    Bose S; Dhawan D; Nandi S; Sarkar RR; Ghosh D
    Phys Chem Chem Phys; 2018 Sep; 20(35):22987-22996. PubMed ID: 30156235
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Molecular tailoring approach: a route for ab initio treatment of large clusters.
    Sahu N; Gadre SR
    Acc Chem Res; 2014 Sep; 47(9):2739-47. PubMed ID: 24798296
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Getting the Right Answers for the Right Reasons: Toward Predictive Molecular Simulations of Water with Many-Body Potential Energy Functions.
    Paesani F
    Acc Chem Res; 2016 Sep; 49(9):1844-51. PubMed ID: 27548325
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Assessing Many-Body Effects of Water Self-Ions. I: OH
    Egan CK; Paesani F
    J Chem Theory Comput; 2018 Apr; 14(4):1982-1997. PubMed ID: 29543452
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Generalized Switch Functions in the Multilevel Many-Body Expansion Method and Its Application to Water Clusters.
    Chen GD; Weng J; Song G; Li ZH
    J Chem Theory Comput; 2017 May; 13(5):2010-2020. PubMed ID: 28422489
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Water 16-mers and hexamers: assessment of the three-body and electrostatically embedded many-body approximations of the correlation energy or the nonlocal energy as ways to include cooperative effects.
    Qi HW; Leverentz HR; Truhlar DG
    J Phys Chem A; 2013 May; 117(21):4486-99. PubMed ID: 23627665
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Constructing simple yet accurate potentials for describing the solvation of HCl/water clusters in bulk helium and nanodroplets.
    Boese AD; Forbert H; Masia M; Tekin A; Marx D; Jansen G
    Phys Chem Chem Phys; 2011 Aug; 13(32):14550-64. PubMed ID: 21687854
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Graph-Theory-Based Molecular Fragmentation for Efficient and Accurate Potential Surface Calculations in Multiple Dimensions.
    Kumar A; DeGregorio N; Iyengar SS
    J Chem Theory Comput; 2021 Nov; 17(11):6671-6690. PubMed ID: 34623129
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Pair-Pair Approximation to the Generalized Many-Body Expansion: An Alternative to the Four-Body Expansion for ab Initio Prediction of Protein Energetics via Molecular Fragmentation.
    Liu J; Herbert JM
    J Chem Theory Comput; 2016 Feb; 12(2):572-84. PubMed ID: 26730608
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Accelerating the Convergence of Self-Consistent Field Calculations Using the Many-Body Expansion.
    Ballesteros F; Lao KU
    J Chem Theory Comput; 2022 Jan; 18(1):179-191. PubMed ID: 34881906
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Elevating density functional theory to chemical accuracy for water simulations through a density-corrected many-body formalism.
    Dasgupta S; Lambros E; Perdew JP; Paesani F
    Nat Commun; 2021 Nov; 12(1):6359. PubMed ID: 34737311
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.