BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 34196559)

  • 1. The Rise of Neural Networks for Materials and Chemical Dynamics.
    Kulichenko M; Smith JS; Nebgen B; Li YW; Fedik N; Boldyrev AI; Lubbers N; Barros K; Tretiak S
    J Phys Chem Lett; 2021 Jul; 12(26):6227-6243. PubMed ID: 34196559
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Active and Transfer Learning of High-Dimensional Neural Network Potentials for Transition Metals.
    Varughese B; Manna S; Loeffler TD; Batra R; Cherukara MJ; Sankaranarayanan SKRS
    ACS Appl Mater Interfaces; 2024 Apr; ():. PubMed ID: 38593033
    [TBL] [Abstract][Full Text] [Related]  

  • 3. E(3)-equivariant graph neural networks for data-efficient and accurate interatomic potentials.
    Batzner S; Musaelian A; Sun L; Geiger M; Mailoa JP; Kornbluth M; Molinari N; Smidt TE; Kozinsky B
    Nat Commun; 2022 May; 13(1):2453. PubMed ID: 35508450
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transfer learning for chemically accurate interatomic neural network potentials.
    Zaverkin V; Holzmüller D; Bonfirraro L; Kästner J
    Phys Chem Chem Phys; 2023 Feb; 25(7):5383-5396. PubMed ID: 36748821
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fast and Accurate Molecular Property Prediction: Learning Atomic Interactions and Potentials with Neural Networks.
    Tsubaki M; Mizoguchi T
    J Phys Chem Lett; 2018 Oct; 9(19):5733-5741. PubMed ID: 30081630
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interatomic force from neural network based variational quantum Monte Carlo.
    Qian Y; Fu W; Ren W; Chen J
    J Chem Phys; 2022 Oct; 157(16):164104. PubMed ID: 36319420
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Machine Learning Interatomic Potentials as Emerging Tools for Materials Science.
    Deringer VL; Caro MA; Csányi G
    Adv Mater; 2019 Nov; 31(46):e1902765. PubMed ID: 31486179
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Approaching coupled cluster accuracy with a general-purpose neural network potential through transfer learning.
    Smith JS; Nebgen BT; Zubatyuk R; Lubbers N; Devereux C; Barros K; Tretiak S; Isayev O; Roitberg AE
    Nat Commun; 2019 Jul; 10(1):2903. PubMed ID: 31263102
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Importance of Engineered and Learned Molecular Representations in Predicting Organic Reactivity, Selectivity, and Chemical Properties.
    Gallegos LC; Luchini G; St John PC; Kim S; Paton RS
    Acc Chem Res; 2021 Feb; 54(4):827-836. PubMed ID: 33534534
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Uncertainty-driven dynamics for active learning of interatomic potentials.
    Kulichenko M; Barros K; Lubbers N; Li YW; Messerly R; Tretiak S; Smith JS; Nebgen B
    Nat Comput Sci; 2023 Mar; 3(3):230-239. PubMed ID: 38177878
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Machine learning of molecular properties: Locality and active learning.
    Gubaev K; Podryabinkin EV; Shapeev AV
    J Chem Phys; 2018 Jun; 148(24):241727. PubMed ID: 29960350
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Teaching a neural network to attach and detach electrons from molecules.
    Zubatyuk R; Smith JS; Nebgen BT; Tretiak S; Isayev O
    Nat Commun; 2021 Aug; 12(1):4870. PubMed ID: 34381051
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Representations in neural network based empirical potentials.
    Cubuk ED; Malone BD; Onat B; Waterland A; Kaxiras E
    J Chem Phys; 2017 Jul; 147(2):024104. PubMed ID: 28711053
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Machine-Learning-Based Interatomic Potentials for Group IIB to VIA Semiconductors: Toward a Universal Model.
    Liu J; Zhang X; Chen T; Zhang Y; Zhang D; Zhang L; Chen M
    J Chem Theory Comput; 2024 Jun; ():. PubMed ID: 38898771
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Generating Minimal Training Sets for Machine Learned Potentials.
    Finkbeiner J; Tovey S; Holm C
    Phys Rev Lett; 2024 Apr; 132(16):167301. PubMed ID: 38701485
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Committee neural network potentials control generalization errors and enable active learning.
    Schran C; Brezina K; Marsalek O
    J Chem Phys; 2020 Sep; 153(10):104105. PubMed ID: 32933264
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-Throughput Screening of Promising Redox-Active Molecules with MolGAT.
    Chaka MD; Geffe CA; Rodriguez A; Seriani N; Wu Q; Mekonnen YS
    ACS Omega; 2023 Jul; 8(27):24268-24278. PubMed ID: 37457475
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predicting Molecular Energy Using Force-Field Optimized Geometries and Atomic Vector Representations Learned from an Improved Deep Tensor Neural Network.
    Lu J; Wang C; Zhang Y
    J Chem Theory Comput; 2019 Jul; 15(7):4113-4121. PubMed ID: 31142110
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Automated Fitting of Neural Network Potentials at Coupled Cluster Accuracy: Protonated Water Clusters as Testing Ground.
    Schran C; Behler J; Marx D
    J Chem Theory Comput; 2020 Jan; 16(1):88-99. PubMed ID: 31743025
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On-the-Fly Active Learning of Interatomic Potentials for Large-Scale Atomistic Simulations.
    Jinnouchi R; Miwa K; Karsai F; Kresse G; Asahi R
    J Phys Chem Lett; 2020 Sep; 11(17):6946-6955. PubMed ID: 32787192
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.