These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 34196559)

  • 1. The Rise of Neural Networks for Materials and Chemical Dynamics.
    Kulichenko M; Smith JS; Nebgen B; Li YW; Fedik N; Boldyrev AI; Lubbers N; Barros K; Tretiak S
    J Phys Chem Lett; 2021 Jul; 12(26):6227-6243. PubMed ID: 34196559
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Active and Transfer Learning of High-Dimensional Neural Network Potentials for Transition Metals.
    Varughese B; Manna S; Loeffler TD; Batra R; Cherukara MJ; Sankaranarayanan SKRS
    ACS Appl Mater Interfaces; 2024 Apr; ():. PubMed ID: 38593033
    [TBL] [Abstract][Full Text] [Related]  

  • 3. E(3)-equivariant graph neural networks for data-efficient and accurate interatomic potentials.
    Batzner S; Musaelian A; Sun L; Geiger M; Mailoa JP; Kornbluth M; Molinari N; Smidt TE; Kozinsky B
    Nat Commun; 2022 May; 13(1):2453. PubMed ID: 35508450
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transfer learning for chemically accurate interatomic neural network potentials.
    Zaverkin V; Holzmüller D; Bonfirraro L; Kästner J
    Phys Chem Chem Phys; 2023 Feb; 25(7):5383-5396. PubMed ID: 36748821
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fast and Accurate Molecular Property Prediction: Learning Atomic Interactions and Potentials with Neural Networks.
    Tsubaki M; Mizoguchi T
    J Phys Chem Lett; 2018 Oct; 9(19):5733-5741. PubMed ID: 30081630
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interatomic force from neural network based variational quantum Monte Carlo.
    Qian Y; Fu W; Ren W; Chen J
    J Chem Phys; 2022 Oct; 157(16):164104. PubMed ID: 36319420
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Performance Assessment of Universal Machine Learning Interatomic Potentials: Challenges and Directions for Materials' Surfaces.
    Focassio B; M Freitas LP; Schleder GR
    ACS Appl Mater Interfaces; 2024 Jul; ():. PubMed ID: 38990833
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Machine Learning Interatomic Potentials as Emerging Tools for Materials Science.
    Deringer VL; Caro MA; Csányi G
    Adv Mater; 2019 Nov; 31(46):e1902765. PubMed ID: 31486179
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Approaching coupled cluster accuracy with a general-purpose neural network potential through transfer learning.
    Smith JS; Nebgen BT; Zubatyuk R; Lubbers N; Devereux C; Barros K; Tretiak S; Isayev O; Roitberg AE
    Nat Commun; 2019 Jul; 10(1):2903. PubMed ID: 31263102
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Importance of Engineered and Learned Molecular Representations in Predicting Organic Reactivity, Selectivity, and Chemical Properties.
    Gallegos LC; Luchini G; St John PC; Kim S; Paton RS
    Acc Chem Res; 2021 Feb; 54(4):827-836. PubMed ID: 33534534
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Machine learning of molecular properties: Locality and active learning.
    Gubaev K; Podryabinkin EV; Shapeev AV
    J Chem Phys; 2018 Jun; 148(24):241727. PubMed ID: 29960350
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Uncertainty-driven dynamics for active learning of interatomic potentials.
    Kulichenko M; Barros K; Lubbers N; Li YW; Messerly R; Tretiak S; Smith JS; Nebgen B
    Nat Comput Sci; 2023 Mar; 3(3):230-239. PubMed ID: 38177878
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Teaching a neural network to attach and detach electrons from molecules.
    Zubatyuk R; Smith JS; Nebgen BT; Tretiak S; Isayev O
    Nat Commun; 2021 Aug; 12(1):4870. PubMed ID: 34381051
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Representations in neural network based empirical potentials.
    Cubuk ED; Malone BD; Onat B; Waterland A; Kaxiras E
    J Chem Phys; 2017 Jul; 147(2):024104. PubMed ID: 28711053
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Machine-Learning-Based Interatomic Potentials for Group IIB to VIA Semiconductors: Toward a Universal Model.
    Liu J; Zhang X; Chen T; Zhang Y; Zhang D; Zhang L; Chen M
    J Chem Theory Comput; 2024 Jul; 20(13):5717-5731. PubMed ID: 38898771
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Generating Minimal Training Sets for Machine Learned Potentials.
    Finkbeiner J; Tovey S; Holm C
    Phys Rev Lett; 2024 Apr; 132(16):167301. PubMed ID: 38701485
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Committee neural network potentials control generalization errors and enable active learning.
    Schran C; Brezina K; Marsalek O
    J Chem Phys; 2020 Sep; 153(10):104105. PubMed ID: 32933264
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transferable machine learning interatomic potential for carbon hydrogen systems.
    Faraji S; Liu M
    Phys Chem Chem Phys; 2024 Aug; 26(34):22346-22358. PubMed ID: 39140158
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Automated Fitting of Neural Network Potentials at Coupled Cluster Accuracy: Protonated Water Clusters as Testing Ground.
    Schran C; Behler J; Marx D
    J Chem Theory Comput; 2020 Jan; 16(1):88-99. PubMed ID: 31743025
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On-the-Fly Active Learning of Interatomic Potentials for Large-Scale Atomistic Simulations.
    Jinnouchi R; Miwa K; Karsai F; Kresse G; Asahi R
    J Phys Chem Lett; 2020 Sep; 11(17):6946-6955. PubMed ID: 32787192
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.