BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 34196686)

  • 1. CStreet: a computed Cell State trajectory inference method for time-series single-cell RNA sequencing data.
    Zhao C; Xiu W; Hua Y; Zhang N; Zhang Y
    Bioinformatics; 2021 Nov; 37(21):3774-3780. PubMed ID: 34196686
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Entropy-based inference of transition states and cellular trajectory for single-cell transcriptomics.
    Gan Y; Guo C; Guo W; Xu G; Zou G
    Brief Bioinform; 2022 Jul; 23(4):. PubMed ID: 35696651
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tempora: Cell trajectory inference using time-series single-cell RNA sequencing data.
    Tran TN; Bader GD
    PLoS Comput Biol; 2020 Sep; 16(9):e1008205. PubMed ID: 32903255
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A machine learning-based method for automatically identifying novel cells in annotating single-cell RNA-seq data.
    Li Z; Wang Y; Ganan-Gomez I; Colla S; Do KA
    Bioinformatics; 2022 Oct; 38(21):4885-4892. PubMed ID: 36083008
    [TBL] [Abstract][Full Text] [Related]  

  • 5. scShaper: an ensemble method for fast and accurate linear trajectory inference from single-cell RNA-seq data.
    Smolander J; Junttila S; Venäläinen MS; Elo LL
    Bioinformatics; 2022 Feb; 38(5):1328-1335. PubMed ID: 34888622
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Single-cell RNA sequencing data analysis based on non-uniform ε-neighborhood network.
    Jia J; Chen L
    Bioinformatics; 2022 Apr; 38(9):2459-2465. PubMed ID: 35188181
    [TBL] [Abstract][Full Text] [Related]  

  • 7. scEpath: energy landscape-based inference of transition probabilities and cellular trajectories from single-cell transcriptomic data.
    Jin S; MacLean AL; Peng T; Nie Q
    Bioinformatics; 2018 Jun; 34(12):2077-2086. PubMed ID: 29415263
    [TBL] [Abstract][Full Text] [Related]  

  • 8. scGAC: a graph attentional architecture for clustering single-cell RNA-seq data.
    Cheng Y; Ma X
    Bioinformatics; 2022 Apr; 38(8):2187-2193. PubMed ID: 35176138
    [TBL] [Abstract][Full Text] [Related]  

  • 9. scWMC: weighted matrix completion-based imputation of scRNA-seq data via prior subspace information.
    Su Y; Wang F; Zhang S; Liang Y; Wong KC; Li X
    Bioinformatics; 2022 Sep; 38(19):4537-4545. PubMed ID: 35984287
    [TBL] [Abstract][Full Text] [Related]  

  • 10. GE-Impute: graph embedding-based imputation for single-cell RNA-seq data.
    Wu X; Zhou Y
    Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 35901457
    [TBL] [Abstract][Full Text] [Related]  

  • 11. scBGEDA: deep single-cell clustering analysis via a dual denoising autoencoder with bipartite graph ensemble clustering.
    Wang Y; Yu Z; Li S; Bian C; Liang Y; Wong KC; Li X
    Bioinformatics; 2023 Feb; 39(2):. PubMed ID: 36734596
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identify, quantify and characterize cellular communication from single-cell RNA sequencing data with scSeqComm.
    Baruzzo G; Cesaro G; Di Camillo B
    Bioinformatics; 2022 Mar; 38(7):1920-1929. PubMed ID: 35043939
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CONICS integrates scRNA-seq with DNA sequencing to map gene expression to tumor sub-clones.
    Müller S; Cho A; Liu SJ; Lim DA; Diaz A
    Bioinformatics; 2018 Sep; 34(18):3217-3219. PubMed ID: 29897414
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Scalable preprocessing for sparse scRNA-seq data exploiting prior knowledge.
    Mukherjee S; Zhang Y; Fan J; Seelig G; Kannan S
    Bioinformatics; 2018 Jul; 34(13):i124-i132. PubMed ID: 29949988
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Vaeda computationally annotates doublets in single-cell RNA sequencing data.
    Schriever H; Kostka D
    Bioinformatics; 2023 Jan; 39(1):. PubMed ID: 36342203
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A robust and accurate single-cell data trajectory inference method using ensemble pseudotime.
    Zhang Y; Tran D; Nguyen T; Dascalu SM; Harris FC
    BMC Bioinformatics; 2023 Feb; 24(1):55. PubMed ID: 36803767
    [TBL] [Abstract][Full Text] [Related]  

  • 17. ASAP: a web-based platform for the analysis and interactive visualization of single-cell RNA-seq data.
    Gardeux V; David FPA; Shajkofci A; Schwalie PC; Deplancke B
    Bioinformatics; 2017 Oct; 33(19):3123-3125. PubMed ID: 28541377
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Model-based branching point detection in single-cell data by K-branches clustering.
    Chlis NK; Wolf FA; Theis FJ
    Bioinformatics; 2017 Oct; 33(20):3211-3219. PubMed ID: 28582478
    [TBL] [Abstract][Full Text] [Related]  

  • 19. scPNMF: sparse gene encoding of single cells to facilitate gene selection for targeted gene profiling.
    Song D; Li K; Hemminger Z; Wollman R; Li JJ
    Bioinformatics; 2021 Jul; 37(Suppl_1):i358-i366. PubMed ID: 34252925
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gene regulation inference from single-cell RNA-seq data with linear differential equations and velocity inference.
    Aubin-Frankowski PC; Vert JP
    Bioinformatics; 2020 Sep; 36(18):4774-4780. PubMed ID: 33026066
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.