These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 34196857)

  • 1. Leaf Surface Wax Chemicals in Trichosanthes anguina (Cucurbitaceae) Cultivars Mediating Short-Range Attraction and Oviposition in Diaphania indica.
    Debnath R; Mitra P; Das S; Barik A
    J Chem Ecol; 2021 Jul; 47(7):664-679. PubMed ID: 34196857
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Epicuticular wax chemicals of
    Kumbhakar S; Das S; Barik A
    Bull Entomol Res; 2023 Dec; 113(6):794-807. PubMed ID: 37855212
    [No Abstract]   [Full Text] [Related]  

  • 3. Comparative performance and digestive physiology of
    Debnath R; Mobarak SH; Mitra P; Barik A
    Bull Entomol Res; 2020 Dec; 110(6):756-766. PubMed ID: 32484147
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Long-chain alkanes and fatty acids from Ludwigia octovalvis weed leaf surface waxes as short-range attractant and ovipositional stimulant to Altica cyanea (Weber) (Coleoptera: Chrysomelidae).
    Mitra S; Sarkar N; Barik A
    Bull Entomol Res; 2017 Jun; 107(3):391-400. PubMed ID: 28132659
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Semiochemicals from Trichosanthes anguina (Cucurbitaceae) plants influence behavior in Diaphania indica.
    Debnath R; Bhattacharyya B; Koner A; Barik A
    Pest Manag Sci; 2023 Nov; 79(11):4295-4308. PubMed ID: 37357178
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Short-range attraction and oviposition stimulant of a biocontrol agent,
    Koner A; Das S; Mobarak SH; Barik A
    Bull Entomol Res; 2022 Apr; 112(2):204-218. PubMed ID: 34448446
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synergism in Host Selection Behavior of Three Generalist Insects Towards Leaf Cuticular Wax of Sesame Cultivars.
    Roy N
    Neotrop Entomol; 2021 Oct; 50(5):812-827. PubMed ID: 34232494
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of
    Mitra P; Mobarak SH; Debnath R; Barik A
    Bull Entomol Res; 2020 Apr; 110(2):231-241. PubMed ID: 31559934
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Leaf epicuticular wax chemicals of the Japanese knotweed Fallopia japonica as oviposition stimulants for Ostrinia latipennis.
    Li G; Ishikawa Y
    J Chem Ecol; 2006 Mar; 32(3):595-604. PubMed ID: 16586039
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spruce budworm feeding and oviposition are stimulated by monoterpenes in white spruce epicuticular waxes.
    Ennis D; Despland E; Chen F; Forgione P; Bauce E
    Insect Sci; 2017 Feb; 24(1):73-80. PubMed ID: 26463122
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Both Volatiles and Cuticular Plant Compounds Determine Oviposition of the Willow Sawfly Nematus oligospilus on Leaves of Salix spp. (Salicaceae).
    Braccini CL; Vega AS; Coll Aráoz MV; Teal PE; Cerrillo T; Zavala JA; Fernandez PC
    J Chem Ecol; 2015 Nov; 41(11):985-96. PubMed ID: 26449817
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Monoterpenes and epicuticular waxes help female autumn gum moth differentiate between waxy and glossy Eucalyptus and leaves of different ages.
    Steinbauer MJ; Schiestl FP; Davies NW
    J Chem Ecol; 2004 Jun; 30(6):1117-42. PubMed ID: 15303318
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Observation on the composition and biosynthesis of egg wax lipids in the cattle tick, Boophilus microplus.
    Booth TF
    Exp Appl Acarol; 1992 May; 14(2):137-49. PubMed ID: 1638927
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chemical profiles of cuticular waxes on various organs of Sorghum bicolor and their antifungal activities.
    Xiao Y; Li X; Yao L; Xu D; Li Y; Zhang X; Li Z; Xiao Q; Ni Y; Guo Y
    Plant Physiol Biochem; 2020 Oct; 155():596-604. PubMed ID: 32846395
    [TBL] [Abstract][Full Text] [Related]  

  • 15. GC-MS Metabolomics to Evaluate the Composition of Plant Cuticular Waxes for Four Triticum aestivum Cultivars.
    Lavergne FD; Broeckling CD; Cockrell DM; Haley SD; Peairs FB; Jahn CE; Heuberger AL
    Int J Mol Sci; 2018 Jan; 19(2):. PubMed ID: 29360745
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Very long chain alkylresorcinols accumulate in the intracuticular wax of rye (Secale cereale L.) leaves near the tissue surface.
    Ji X; Jetter R
    Phytochemistry; 2008 Mar; 69(5):1197-207. PubMed ID: 18234249
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Homologous very-long-chain 1,3-alkanediols and 3-hydroxyaldehydes in leaf cuticular waxes of Ricinus communis L.
    Vermeer CP; Nastold P; Jetter R
    Phytochemistry; 2003 Feb; 62(3):433-8. PubMed ID: 12620356
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Effects of wheat leaf surface waxes on the feeding of two wheat aphid species].
    Liu Y; Chen JL; Cheng DF
    Ying Yong Sheng Tai Xue Bao; 2007 Aug; 18(8):1785-8. PubMed ID: 17974245
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Changes in leaf cuticular waxes of sesame (Sesamum indicum L.) plants exposed to water deficit.
    Kim KS; Park SH; Jenks MA
    J Plant Physiol; 2007 Sep; 164(9):1134-43. PubMed ID: 16904233
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Low secondary leaf wax n-alkane synthesis on fully mature leaves of C3 grasses grown at controlled environmental conditions and variable humidity.
    Gamarra B; Kahmen A
    Rapid Commun Mass Spectrom; 2017 Jan; 31(2):218-226. PubMed ID: 27778411
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.