These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 34196857)

  • 21. Wax Removal and Diamondback Moth Performance in Collards Cultivars.
    Silva GA; Pereira RM; Rodrigues-Silva N; Souza TC; Ferreira DO; Queiroz EA; Silva GAR; Picanço MC
    Neotrop Entomol; 2017 Oct; 46(5):571-577. PubMed ID: 28478539
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cuticular wax composition changes of 10 apple cultivars during postharvest storage.
    Chai Y; Li A; Chit Wai S; Song C; Zhao Y; Duan Y; Zhang B; Lin Q
    Food Chem; 2020 Sep; 324():126903. PubMed ID: 32361095
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cuticular wax profiles of leaves of some traditionally used African Bignoniaceae.
    Gormann R; Schreiber L; Kolodziej H
    Z Naturforsch C J Biosci; 2004; 59(9-10):631-5. PubMed ID: 15540593
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Oviposition Site Selection of the Codling Moth (Lepidoptera: Tortricidae) and its Consequences for Egg and Neonate Performance.
    Wei J; Xu J; Zhang R
    J Econ Entomol; 2015 Aug; 108(4):1915-22. PubMed ID: 26470335
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Influence of Host-Plant Surface Chemicals on the Oviposition of the Cereal Stemborer Busseola Fusca.
    Juma G; Clément G; Ahuya P; Hassanali A; Derridj S; Gaertner C; Linard R; Le Ru B; Frérot B; Calatayud PA
    J Chem Ecol; 2016 May; 42(5):394-403. PubMed ID: 27240622
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Host Selection, Growth, and Survival of Melonworm (Lepidoptera: Crambidae) on Four Cucurbit Crops Under Laboratory Conditions.
    Panthi BR; Seal DR; Capinera JL; Nuessly GS; Martin CG
    Environ Entomol; 2016 Aug; 45(4):945-51. PubMed ID: 27400704
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cabbage waxes affect Trissolcus brochymenae response to short-range synomones.
    Frati F; Salerno G; Conti E
    Insect Sci; 2013 Dec; 20(6):753-62. PubMed ID: 23956054
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Oviposition deterrents from eggs of the cotton bollworm, Helicoverpa armigera (Lepidoptera: Noctuidae): chemical identification and analysis by electroantennogram.
    Liu M; Yu H; Li G
    J Insect Physiol; 2008 Apr; 54(4):656-62. PubMed ID: 18316092
    [TBL] [Abstract][Full Text] [Related]  

  • 29. High Concentrations of Very Long Chain Leaf Wax Alkanes of Thrips Susceptible Pepper Accessions (Capsicum spp).
    Macel M; Visschers IGS; Peters JL; van Dam NM; de Graaf RM
    J Chem Ecol; 2020 Dec; 46(11-12):1082-1089. PubMed ID: 33089351
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Insect egg deposition induces indirect defense and epicuticular wax changes in Arabidopsis thaliana.
    Blenn B; Bandoly M; Küffner A; Otte T; Geiselhardt S; Fatouros NE; Hilker M
    J Chem Ecol; 2012 Jul; 38(7):882-92. PubMed ID: 22588570
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cuticular waxes from potato (Solanum tuberosum) leaves.
    Szafranek BM; Synak EE
    Phytochemistry; 2006 Jan; 67(1):80-90. PubMed ID: 16310230
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Very-long-chain 3-hydroxy fatty acids, 3-hydroxy fatty acid methyl esters and 2-alkanols from cuticular waxes of Aloe arborescens leaves.
    Racovita RC; Peng C; Awakawa T; Abe I; Jetter R
    Phytochemistry; 2015 May; 113():183-94. PubMed ID: 25200334
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The determination of n-alkanes in the cuticular wax of leaves of Ludwigia adscendens L.
    Barik A; Bhattacharya B; Laskar S; Banerjee TC
    Phytochem Anal; 2004; 15(2):109-11. PubMed ID: 15116941
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Quantifying instantaneous regeneration rates of plant leaf waxes using stable hydrogen isotope labeling.
    Gao L; Burnier A; Huang Y
    Rapid Commun Mass Spectrom; 2012 Jan; 26(2):115-22. PubMed ID: 22173799
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cuticular waxes and flavonol aglycones of mistletoes.
    Haas K; Bauer M; Wollenweber E
    Z Naturforsch C J Biosci; 2003; 58(7-8):464-70. PubMed ID: 12939028
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Extracellular lipids of Camelina sativa: characterization of chloroform-extractable waxes from aerial and subterranean surfaces.
    Razeq FM; Kosma DK; Rowland O; Molina I
    Phytochemistry; 2014 Oct; 106():188-196. PubMed ID: 25081105
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The moss Funaria hygrometrica has cuticular wax similar to vascular plants, with distinct composition on leafy gametophyte, calyptra and sporophyte capsule surfaces.
    Busta L; Budke JM; Jetter R
    Ann Bot; 2016 Sep; 118(3):511-22. PubMed ID: 27489161
    [TBL] [Abstract][Full Text] [Related]  

  • 38. 20-hydroxyecdysone deters oviposition and larval feeding in the European grapevine moth, Lobesia botrana.
    Calas D; Thiéry D; Marion-Poll F
    J Chem Ecol; 2006 Nov; 32(11):2443-54. PubMed ID: 17082989
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Leaf-wax n-alkanes record the plant-water environment at leaf flush.
    Tipple BJ; Berke MA; Doman CE; Khachaturyan S; Ehleringer JR
    Proc Natl Acad Sci U S A; 2013 Feb; 110(7):2659-64. PubMed ID: 23359675
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Composition of the epicuticular waxes coating the adaxial side of Phyllostachys aurea leaves: Identification of very-long-chain primary amides.
    Racovita RC; Jetter R
    Phytochemistry; 2016 Oct; 130():252-61. PubMed ID: 27402630
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.