BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

370 related articles for article (PubMed ID: 34196933)

  • 21. Toxic Colors: The Use of Deep Learning for Predicting Toxicity of Compounds Merely from Their Graphic Images.
    Fernandez M; Ban F; Woo G; Hsing M; Yamazaki T; LeBlanc E; Rennie PS; Welch WJ; Cherkasov A
    J Chem Inf Model; 2018 Aug; 58(8):1533-1543. PubMed ID: 30063345
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Comparing Machine Learning Algorithms for Predicting Drug-Induced Liver Injury (DILI).
    Minerali E; Foil DH; Zorn KM; Lane TR; Ekins S
    Mol Pharm; 2020 Jul; 17(7):2628-2637. PubMed ID: 32422053
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Validating the validation: reanalyzing a large-scale comparison of deep learning and machine learning models for bioactivity prediction.
    Robinson MC; Glen RC; Lee AA
    J Comput Aided Mol Des; 2020 Jul; 34(7):717-730. PubMed ID: 31960253
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Predicting the cytotoxicity of chemicals using ensemble learning methods and molecular fingerprints.
    Yin Z; Ai H; Zhang L; Ren G; Wang Y; Zhao Q; Liu H
    J Appl Toxicol; 2019 Oct; 39(10):1366-1377. PubMed ID: 30763981
    [TBL] [Abstract][Full Text] [Related]  

  • 25. ADMET Evaluation in Drug Discovery. Part 17: Development of Quantitative and Qualitative Prediction Models for Chemical-Induced Respiratory Toxicity.
    Lei T; Chen F; Liu H; Sun H; Kang Y; Li D; Li Y; Hou T
    Mol Pharm; 2017 Jul; 14(7):2407-2421. PubMed ID: 28595388
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cheminformatics Analysis and Modeling with MacrolactoneDB.
    Zin PPK; Williams GJ; Ekins S
    Sci Rep; 2020 Apr; 10(1):6284. PubMed ID: 32286395
    [TBL] [Abstract][Full Text] [Related]  

  • 27. TOP: A deep mixture representation learning method for boosting molecular toxicity prediction.
    Peng Y; Zhang Z; Jiang Q; Guan J; Zhou S
    Methods; 2020 Jul; 179():55-64. PubMed ID: 32446957
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Modeling and insights into the structural characteristics of drug-induced autoimmune diseases.
    Guo H; Zhang P; Zhang R; Hua Y; Zhang P; Cui X; Huang X; Li X
    Front Immunol; 2022; 13():1015409. PubMed ID: 36353637
    [TBL] [Abstract][Full Text] [Related]  

  • 29. ToxAlerts: a Web server of structural alerts for toxic chemicals and compounds with potential adverse reactions.
    Sushko I; Salmina E; Potemkin VA; Poda G; Tetko IV
    J Chem Inf Model; 2012 Aug; 52(8):2310-6. PubMed ID: 22876798
    [TBL] [Abstract][Full Text] [Related]  

  • 30. In Silico Prediction of Chemical-Induced Hepatocellular Hypertrophy Using Molecular Descriptors.
    Ambe K; Ishihara K; Ochibe T; Ohya K; Tamura S; Inoue K; Yoshida M; Tohkin M
    Toxicol Sci; 2018 Apr; 162(2):667-675. PubMed ID: 29309657
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cheminformatics in Drug Discovery, an Industrial Perspective.
    Chen H; Kogej T; Engkvist O
    Mol Inform; 2018 Sep; 37(9-10):e1800041. PubMed ID: 29774657
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Review of machine learning and deep learning models for toxicity prediction.
    Guo W; Liu J; Dong F; Song M; Li Z; Khan MKH; Patterson TA; Hong H
    Exp Biol Med (Maywood); 2023 Nov; 248(21):1952-1973. PubMed ID: 38057999
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Identification of active molecules against Mycobacterium tuberculosis through machine learning.
    Ye Q; Chai X; Jiang D; Yang L; Shen C; Zhang X; Li D; Cao D; Hou T
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33822874
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Modeling and insights into the structural basis of chemical acute aquatic toxicity.
    Zhang R; Guo H; Hua Y; Cui X; Shi Y; Li X
    Ecotoxicol Environ Saf; 2022 Sep; 242():113940. PubMed ID: 35999760
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Machine Learning Methods in Drug Discovery.
    Patel L; Shukla T; Huang X; Ussery DW; Wang S
    Molecules; 2020 Nov; 25(22):. PubMed ID: 33198233
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Gene Expression Data Based Deep Learning Model for Accurate Prediction of Drug-Induced Liver Injury in Advance.
    Feng C; Chen H; Yuan X; Sun M; Chu K; Liu H; Rui M
    J Chem Inf Model; 2019 Jul; 59(7):3240-3250. PubMed ID: 31188585
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A Molecular Image-Based Novel Quantitative Structure-Activity Relationship Approach, Deepsnap-Deep Learning and Machine Learning.
    Matsuzaka Y; Uesawa Y
    Curr Issues Mol Biol; 2021; 42():455-472. PubMed ID: 33339777
    [TBL] [Abstract][Full Text] [Related]  

  • 38. In Silico Prediction of Compounds Binding to Human Plasma Proteins by QSAR Models.
    Sun L; Yang H; Li J; Wang T; Li W; Liu G; Tang Y
    ChemMedChem; 2018 Mar; 13(6):572-581. PubMed ID: 29057587
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Deep Learning Algorithm Based on Molecular Fingerprint for Prediction of Drug-Induced Liver Injury.
    Yang Q; Zhang S; Li Y
    Toxicology; 2024 Feb; 502():153736. PubMed ID: 38307192
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Targeting HIV/HCV Coinfection Using a Machine Learning-Based Multiple Quantitative Structure-Activity Relationships (Multiple QSAR) Method.
    Wei Y; Li W; Du T; Hong Z; Lin J
    Int J Mol Sci; 2019 Jul; 20(14):. PubMed ID: 31336592
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.