These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 34197066)

  • 1. Rational Design of Thermocells Driven by the Volume Phase Transition of Hydrogel Nanoparticles.
    Guo B; Miura Y; Hoshino Y
    ACS Appl Mater Interfaces; 2021 Jul; 13(27):32184-32192. PubMed ID: 34197066
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermocells Driven by Phase Transition of Hydrogel Nanoparticles.
    Guo B; Hoshino Y; Gao F; Hayashi K; Miura Y; Kimizuka N; Yamada T
    J Am Chem Soc; 2020 Oct; 142(41):17318-17322. PubMed ID: 32981318
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-Efficiency Cryo-Thermocells Assembled with Anisotropic Holey Graphene Aerogel Electrodes and a Eutectic Redox Electrolyte.
    Li G; Dong D; Hong G; Yan L; Zhang X; Song W
    Adv Mater; 2019 Jun; 31(25):e1901403. PubMed ID: 31034133
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quasi-solid-State Electrolytes for Low-Grade Thermal Energy Harvesting using a Cobalt Redox Couple.
    Taheri A; MacFarlane DR; Pozo-Gonzalo C; Pringle JM
    ChemSusChem; 2018 Aug; 11(16):2788-2796. PubMed ID: 29873193
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Novel Thermocell System Using Proton Solvation Entropy.
    Kobayashi T; Yamada T; Tadokoro M; Kimizuka N
    Chemistry; 2021 Mar; 27(13):4287-4290. PubMed ID: 33205557
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bacterial cellulose-based dual chemical reaction coupled hydrogel thermocells for efficient heat harvesting.
    Zong Y; Lou J; Li H; Li X; Jiang Y; Ding Q; Liu Z; Han W
    Carbohydr Polym; 2022 Oct; 294():119789. PubMed ID: 35868797
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulating Thermogalvanic Effect and Mechanical Robustness via Redox Ions for Flexible Quasi-Solid-State Thermocells.
    Peng P; Zhou J; Liang L; Huang X; Lv H; Liu Z; Chen G
    Nanomicro Lett; 2022 Mar; 14(1):81. PubMed ID: 35333992
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Direct Conversion of Phase-Transition Entropy into Electrochemical Thermopower and the Peltier Effect.
    Zhou H; Matoba F; Matsuno R; Wakayama Y; Yamada T
    Adv Mater; 2023 Sep; 35(36):e2303341. PubMed ID: 37315308
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermosensitive crystallization-boosted liquid thermocells for low-grade heat harvesting.
    Yu B; Duan J; Cong H; Xie W; Liu R; Zhuang X; Wang H; Qi B; Xu M; Wang ZL; Zhou J
    Science; 2020 Oct; 370(6514):342-346. PubMed ID: 32913001
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrochemical Thermoelectric Conversion with Polysulfide as Redox Species.
    Liang Y; Hui JK; Yamada T; Kimizuka N
    ChemSusChem; 2019 Sep; 12(17):4014-4020. PubMed ID: 31334607
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Iron (II/III) perchlorate electrolytes for electrochemically harvesting low-grade thermal energy.
    Kim JH; Lee JH; Palem RR; Suh MS; Lee HH; Kang TJ
    Sci Rep; 2019 Jun; 9(1):8706. PubMed ID: 31213633
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Short-Circuit Current in Polymeric Membrane-Based Thermocells: An Experimental Study.
    Barragán VM
    Membranes (Basel); 2021 Jun; 11(7):. PubMed ID: 34203522
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Strong Tough Thermogalvanic Hydrogel Thermocell With Extraordinarily High Thermoelectric Performance.
    Liu L; Zhang D; Bai P; Mao Y; Li Q; Guo J; Fang Y; Ma R
    Adv Mater; 2023 Aug; 35(32):e2300696. PubMed ID: 37222174
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hexakis(2,3,6-tri-
    Liang Y; Yamada T; Zhou H; Kimizuka N
    Chem Sci; 2019 Jan; 10(3):773-780. PubMed ID: 30746110
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exploring the local solvation structure of redox molecules in a mixed solvent for increasing the Seebeck coefficient of thermocells.
    Inoue H; Zhou H; Ando H; Nakagawa S; Yamada T
    Chem Sci; 2023 Dec; 15(1):146-153. PubMed ID: 38131095
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermo-electrochemical cells for waste heat harvesting - progress and perspectives.
    Dupont MF; MacFarlane DR; Pringle JM
    Chem Commun (Camb); 2017 Jun; 53(47):6288-6302. PubMed ID: 28534592
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced Seebeck coefficients of thermocells by heat-induced deposition of I
    Inoue H; Liang Y; Yamada T; Kimizuka N
    Chem Commun (Camb); 2020 Jun; 56(51):7013-7016. PubMed ID: 32441729
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hierarchically Anisotropic Networks to Decouple Mechanical and Ionic Properties for High-Performance Quasi-Solid Thermocells.
    Gao W; Lei Z; Chen W; Chen Y
    ACS Nano; 2022 May; 16(5):8347-8357. PubMed ID: 35452232
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An Electricity-Generating Window Made of a Transparent Energy Harvester of Thermocells.
    Lee JH; Shin G; Baek JY; Kang TJ
    ACS Appl Mater Interfaces; 2021 May; 13(18):21157-21165. PubMed ID: 33793183
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Harvesting waste thermal energy using a carbon-nanotube-based thermo-electrochemical cell.
    Hu R; Cola BA; Haram N; Barisci JN; Lee S; Stoughton S; Wallace G; Too C; Thomas M; Gestos A; Cruz ME; Ferraris JP; Zakhidov AA; Baughman RH
    Nano Lett; 2010 Mar; 10(3):838-46. PubMed ID: 20170193
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.