BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 34197102)

  • 1. Dynamically Polarizable Force Fields for Surface Simulations via Multi-output Classification Neural Networks.
    Di Pasquale N; Elliott JD; Hadjidoukas P; Carbone P
    J Chem Theory Comput; 2021 Jul; 17(7):4477-4485. PubMed ID: 34197102
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Toward a general neural network force field for protein simulations: Refining the intramolecular interaction in protein.
    Zhang P; Yang W
    J Chem Phys; 2023 Jul; 159(2):. PubMed ID: 37431910
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Some practical approaches to treating electrostatic polarization of proteins.
    Ji C; Mei Y
    Acc Chem Res; 2014 Sep; 47(9):2795-803. PubMed ID: 24883956
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of Representations and Response Models for Polarizable Force Fields.
    Li A; Voronin A; Fenley AT; Gilson MK
    J Phys Chem B; 2016 Aug; 120(33):8668-84. PubMed ID: 27248842
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Theoretical modeling of large molecular systems. Advances in the local self consistent field method for mixed quantum mechanics/molecular mechanics calculations.
    Monari A; Rivail JL; Assfeld X
    Acc Chem Res; 2013 Feb; 46(2):596-603. PubMed ID: 23249409
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The roles of electronic exchange and correlation in charge-transfer- to-solvent dynamics: Many-electron nonadiabatic mixed quantum/classical simulations of photoexcited sodium anions in the condensed phase.
    Glover WJ; Larsen RE; Schwartz BJ
    J Chem Phys; 2008 Oct; 129(16):164505. PubMed ID: 19045282
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Revisiting the hexane-water interface via molecular dynamics simulations using nonadditive alkane-water potentials.
    Patel SA; Brooks CL
    J Chem Phys; 2006 May; 124(20):204706. PubMed ID: 16774363
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Polarizable Site Charge Model at Liquid/Solid Interfaces for Describing Surface Polarity: Application to Structure and Molecular Dynamics of Water/Rutile TiO2(110) Interface.
    Nakamura H; Ohto T; Nagata Y
    J Chem Theory Comput; 2013 Feb; 9(2):1193-201. PubMed ID: 26588762
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pairwise-additive and polarizable atomistic force fields for molecular dynamics simulations of proteins.
    Lemkul JA
    Prog Mol Biol Transl Sci; 2020; 170():1-71. PubMed ID: 32145943
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Capturing charge and size effects of ions at the graphene-electrolyte interface using polarizable force field simulations.
    H H; Mewada R; Mallajosyula SS
    Nanoscale Adv; 2023 Jan; 5(3):796-804. PubMed ID: 36756506
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A nonadditive methanol force field: bulk liquid and liquid-vapor interfacial properties via molecular dynamics simulations using a fluctuating charge model.
    Patel S; Brooks CL
    J Chem Phys; 2005 Jan; 122(2):024508. PubMed ID: 15638599
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Scalable Bayesian Uncertainty Quantification for Neural Network Potentials: Promise and Pitfalls.
    Thaler S; Doehner G; Zavadlav J
    J Chem Theory Comput; 2023 Jul; 19(14):4520-4532. PubMed ID: 37014758
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tinker-HP: a massively parallel molecular dynamics package for multiscale simulations of large complex systems with advanced point dipole polarizable force fields.
    Lagardère L; Jolly LH; Lipparini F; Aviat F; Stamm B; Jing ZF; Harger M; Torabifard H; Cisneros GA; Schnieders MJ; Gresh N; Maday Y; Ren PY; Ponder JW; Piquemal JP
    Chem Sci; 2018 Jan; 9(4):956-972. PubMed ID: 29732110
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Higher Accuracy Achieved in the Simulations of Protein Structure Refinement, Protein Folding, and Intrinsically Disordered Proteins Using Polarizable Force Fields.
    Wang A; Zhang Z; Li G
    J Phys Chem Lett; 2018 Dec; 9(24):7110-7116. PubMed ID: 30514082
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transferable Dynamic Molecular Charge Assignment Using Deep Neural Networks.
    Nebgen B; Lubbers N; Smith JS; Sifain AE; Lokhov A; Isayev O; Roitberg AE; Barros K; Tretiak S
    J Chem Theory Comput; 2018 Sep; 14(9):4687-4698. PubMed ID: 30064217
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Implementation of extended Lagrangian dynamics in GROMACS for polarizable simulations using the classical Drude oscillator model.
    Lemkul JA; Roux B; van der Spoel D; MacKerell AD
    J Comput Chem; 2015 Jul; 36(19):1473-9. PubMed ID: 25962472
    [TBL] [Abstract][Full Text] [Related]  

  • 17. First-Principles, Physically Motivated Force Field for the Ionic Liquid [BMIM][BF4].
    Choi E; McDaniel JG; Schmidt JR; Yethiraj A
    J Phys Chem Lett; 2014 Aug; 5(15):2670-4. PubMed ID: 26277961
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On the Interplay between Electronic Structure and Polarizable Force Fields When Calculating Solution-Phase Charge-Transfer Rates.
    Han J; Zhang P; Aksu H; Maiti B; Sun X; Geva E; Dunietz BD; Cheung MS
    J Chem Theory Comput; 2020 Oct; 16(10):6481-6490. PubMed ID: 32997944
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A QM/MD Coupling Method to Model the Ion-Induced Polarization of Graphene.
    Elliott JD; Troisi A; Carbone P
    J Chem Theory Comput; 2020 Aug; 16(8):5253-5263. PubMed ID: 32644791
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Advancement of polarizable force field and its use for molecular modeling and design.
    Xu P; Wang J; Xu Y; Chu H; Liu J; Zhao M; Zhang D; Mao Y; Li B; Ding Y; Li G
    Adv Exp Med Biol; 2015; 827():19-32. PubMed ID: 25387957
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.