These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
160 related articles for article (PubMed ID: 34197125)
1. Tunable Porous Electrode Architectures for Enhanced Li-Ion Storage Kinetics in Thick Electrodes. Zhang X; Hui Z; King S; Wang L; Ju Z; Wu J; Takeuchi KJ; Marschilok AC; West AC; Takeuchi ES; Yu G Nano Lett; 2021 Jul; 21(13):5896-5904. PubMed ID: 34197125 [TBL] [Abstract][Full Text] [Related]
2. Promoting Transport Kinetics in Li-Ion Battery with Aligned Porous Electrode Architectures. Zhang X; Ju Z; Housel LM; Wang L; Zhu Y; Singh G; Sadique N; Takeuchi KJ; Takeuchi ES; Marschilok AC; Yu G Nano Lett; 2019 Nov; 19(11):8255-8261. PubMed ID: 31661622 [TBL] [Abstract][Full Text] [Related]
3. Tortuosity Engineering for Improved Charge Storage Kinetics in High-Areal-Capacity Battery Electrodes. Ju Z; Zhang X; Wu J; King ST; Chang CC; Yan S; Xue Y; Takeuchi KJ; Marschilok AC; Wang L; Takeuchi ES; Yu G Nano Lett; 2022 Aug; 22(16):6700-6708. PubMed ID: 35921591 [TBL] [Abstract][Full Text] [Related]
4. Sub-Thick Electrodes with Enhanced Transport Kinetics via In Situ Epitaxial Heterogeneous Interfaces for High Areal-Capacity Lithium Ion Batteries. Zhou S; Huang P; Xiong T; Yang F; Yang H; Huang Y; Li D; Deng J; Balogun MJT Small; 2021 Jul; 17(26):e2100778. PubMed ID: 34060232 [TBL] [Abstract][Full Text] [Related]
5. Gradient Architecture Design in Scalable Porous Battery Electrodes. Zhang X; Hui Z; King ST; Wu J; Ju Z; Takeuchi KJ; Marschilok AC; West AC; Takeuchi ES; Wang L; Yu G Nano Lett; 2022 Mar; 22(6):2521-2528. PubMed ID: 35254075 [TBL] [Abstract][Full Text] [Related]
7. Revealing the Rate-Limiting Li-Ion Diffusion Pathway in Ultrathick Electrodes for Li-Ion Batteries. Gao H; Wu Q; Hu Y; Zheng JP; Amine K; Chen Z J Phys Chem Lett; 2018 Sep; 9(17):5100-5104. PubMed ID: 30130117 [TBL] [Abstract][Full Text] [Related]
8. 3D printing of fast kinetics reconciled ultra-thick cathodes for high areal energy density aqueous Li-Zn hybrid battery. He H; Luo D; Zeng L; He J; Li X; Yu H; Zhang C Sci Bull (Beijing); 2022 Jun; 67(12):1253-1263. PubMed ID: 36546155 [TBL] [Abstract][Full Text] [Related]
9. Densified vertically lamellar electrode architectures for compact energy storage. Ju Z; Checko S; Xu X; Calderon J; Raigama KU; Takeuchi KJ; Marschilok AC; Takeuchi ES; Yu G Proc Natl Acad Sci U S A; 2023 Jul; 120(30):e2308009120. PubMed ID: 37459515 [TBL] [Abstract][Full Text] [Related]
10. Probing transport limitations in thick sintered battery electrodes with neutron imaging. Nie Z; Ong S; Hussey DS; LaManna JM; Jacobson DL; Koenig GM Mol Syst Des Eng; 2020; 5():. PubMed ID: 35003760 [TBL] [Abstract][Full Text] [Related]
11. Structural optimization of 3D porous electrodes for high-rate performance lithium ion batteries. Ye J; Baumgaertel AC; Wang YM; Biener J; Biener MM ACS Nano; 2015 Feb; 9(2):2194-202. PubMed ID: 25491650 [TBL] [Abstract][Full Text] [Related]
12. Probing Kinetics of Water-in-Salt Aqueous Batteries with Thick Porous Electrodes. Lin CH; Wang L; King ST; Bai J; Housel LM; McCarthy AH; Vila MN; Zhu H; Zhao C; Zou L; Ghose S; Xiao X; Lee WK; Takeuchi KJ; Marschilok AC; Takeuchi ES; Ge M; Chen-Wiegart YK ACS Cent Sci; 2021 Oct; 7(10):1676-1687. PubMed ID: 34729411 [TBL] [Abstract][Full Text] [Related]
13. Low Tortuous, Highly Conductive, and High-Areal-Capacity Battery Electrodes Enabled by Through-thickness Aligned Carbon Fiber Framework. Shi B; Shang Y; Pei Y; Pei S; Wang L; Heider D; Zhao YY; Zheng C; Yang B; Yarlagadda S; Chou TW; Fu KK Nano Lett; 2020 Jul; 20(7):5504-5512. PubMed ID: 32551672 [TBL] [Abstract][Full Text] [Related]
14. Low-Tortuosity Thick Electrodes with Active Materials Gradient Design for Enhanced Energy Storage. Wu J; Ju Z; Zhang X; Xu X; Takeuchi KJ; Marschilok AC; Takeuchi ES; Yu G ACS Nano; 2022 Mar; 16(3):4805-4812. PubMed ID: 35234442 [TBL] [Abstract][Full Text] [Related]
15. Toward High Areal Energy and Power Density Electrode for Li-Ion Batteries via Optimized 3D Printing Approach. Wang J; Sun Q; Gao X; Wang C; Li W; Holness FB; Zheng M; Li R; Price AD; Sun X; Sham TK; Sun X ACS Appl Mater Interfaces; 2018 Nov; 10(46):39794-39801. PubMed ID: 30372018 [TBL] [Abstract][Full Text] [Related]
16. Enabling High-Areal-Capacity Lithium-Sulfur Batteries: Designing Anisotropic and Low-Tortuosity Porous Architectures. Li Y; Fu KK; Chen C; Luo W; Gao T; Xu S; Dai J; Pastel G; Wang Y; Liu B; Song J; Chen Y; Yang C; Hu L ACS Nano; 2017 May; 11(5):4801-4807. PubMed ID: 28485923 [TBL] [Abstract][Full Text] [Related]
17. Architected Low-Tortuosity Electrodes with Tunable Porosity from Nonequilibrium Soft-Matter Processing. Resing AB; Fukuda C; Werner JG Adv Mater; 2023 Feb; 35(7):e2209694. PubMed ID: 36417573 [TBL] [Abstract][Full Text] [Related]
18. Porous Cu Film Enables Thick Slurry-Cast Anodes with Enhanced Charge Transfer Efficiency for High-Performance Li-Ion Batteries. Ren Z; Huang L; Lin Z; Mu Y; Ji X; Zeng J; Yu J ACS Appl Mater Interfaces; 2020 Oct; 12(42):47623-47633. PubMed ID: 33047606 [TBL] [Abstract][Full Text] [Related]
19. Mesoporous Thin-Wall Molybdenum Nitride for Fast and Stable Na/Li Storage. Jiang G; Qiu Y; Lu Q; Zhuang W; Xu X; Kaskel S; Xu F; Wang H ACS Appl Mater Interfaces; 2019 Nov; 11(44):41188-41195. PubMed ID: 31599563 [TBL] [Abstract][Full Text] [Related]
20. Interpenetrated Structures for Enhancing Ion Diffusion Kinetics in Electrochemical Energy Storage Devices. Xue X; Feng L; Ren Q; Tran C; Eisenberg S; Pinongcos A; Valdovinos L; Hsieh C; Heo TW; Worsley MA; Zhu C; Li Y Nanomicro Lett; 2024 Jul; 16(1):255. PubMed ID: 39052164 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]