These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 34197330)

  • 1. Self-Attention-Based Deep Learning Network for Regional Influenza Forecasting.
    Jung S; Moon J; Park S; Hwang E
    IEEE J Biomed Health Inform; 2022 Feb; 26(2):922-933. PubMed ID: 34197330
    [TBL] [Abstract][Full Text] [Related]  

  • 2. RESEAT: Recurrent Self-Attention Network for Multi-Regional Influenza Forecasting.
    Moon J; Jung S; Park S; Hwang E
    IEEE J Biomed Health Inform; 2023 May; 27(5):2585-2596. PubMed ID: 37027675
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influenza surveillance with Baidu index and attention-based long short-term memory model.
    Dai S; Han L
    PLoS One; 2023; 18(1):e0280834. PubMed ID: 36689543
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Energy Load Forecasting Using a Dual-Stage Attention-Based Recurrent Neural Network.
    Ozcan A; Catal C; Kasif A
    Sensors (Basel); 2021 Oct; 21(21):. PubMed ID: 34770422
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Long-Term Regional Influenza-Like-Illness Forecasting Using Exogenous Data.
    Papagiannopoulou E; Bossa M; Deligiannis N; Sahli H
    IEEE J Biomed Health Inform; 2024 Jun; 28(6):3781-3792. PubMed ID: 38483802
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deep-Learning Model for Influenza Prediction From Multisource Heterogeneous Data in a Megacity: Model Development and Evaluation.
    Yang L; Li G; Yang J; Zhang T; Du J; Liu T; Zhang X; Han X; Li W; Ma L; Feng L; Yang W
    J Med Internet Res; 2023 Feb; 25():e44238. PubMed ID: 36780207
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Water quality assessment of a river using deep learning Bi-LSTM methodology: forecasting and validation.
    Khullar S; Singh N
    Environ Sci Pollut Res Int; 2022 Feb; 29(9):12875-12889. PubMed ID: 33988840
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An Experimental Review on Deep Learning Architectures for Time Series Forecasting.
    Lara-Benítez P; Carranza-García M; Riquelme JC
    Int J Neural Syst; 2021 Mar; 31(3):2130001. PubMed ID: 33588711
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Long Short-term Memory-Based Prediction of the Spread of Influenza-Like Illness Leveraging Surveillance, Weather, and Twitter Data: Model Development and Validation.
    Athanasiou M; Fragkozidis G; Zarkogianni K; Nikita KS
    J Med Internet Res; 2023 Feb; 25():e42519. PubMed ID: 36745490
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Local spatial and temporal relation discovery model based on attention mechanism for traffic forecasting.
    Xu C; Xu C
    Neural Netw; 2024 Aug; 176():106365. PubMed ID: 38739964
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Attention-based recurrent neural network for influenza epidemic prediction.
    Zhu X; Fu B; Yang Y; Ma Y; Hao J; Chen S; Liu S; Li T; Liu S; Guo W; Liao Z
    BMC Bioinformatics; 2019 Nov; 20(Suppl 18):575. PubMed ID: 31760945
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Long-term prediction for temporal propagation of seasonal influenza using Transformer-based model.
    Li L; Jiang Y; Huang B
    J Biomed Inform; 2021 Oct; 122():103894. PubMed ID: 34454080
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Forecasting influenza-like illness dynamics for military populations using neural networks and social media.
    Volkova S; Ayton E; Porterfield K; Corley CD
    PLoS One; 2017; 12(12):e0188941. PubMed ID: 29244814
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A COVID-19 Pandemic Artificial Intelligence-Based System With Deep Learning Forecasting and Automatic Statistical Data Acquisition: Development and Implementation Study.
    Yu CS; Chang SS; Chang TH; Wu JL; Lin YJ; Chien HF; Chen RJ
    J Med Internet Res; 2021 May; 23(5):e27806. PubMed ID: 33900932
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improving influenza surveillance based on multi-granularity deep spatiotemporal neural network.
    Wang R; Wu H; Wu Y; Zheng J; Li Y
    Comput Biol Med; 2021 Jul; 134():104482. PubMed ID: 34051452
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deep Tower Networks for Efficient Temperature Forecasting from Multiple Data Sources.
    Eide SS; Riegler MA; Hammer HL; Bremnes JB
    Sensors (Basel); 2022 Apr; 22(7):. PubMed ID: 35408416
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The predictive skill of convolutional neural networks models for disease forecasting.
    Lee K; Ray J; Safta C
    PLoS One; 2021; 16(7):e0254319. PubMed ID: 34242349
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Complementing the power of deep learning with statistical model fusion: Probabilistic forecasting of influenza in Dallas County, Texas, USA.
    Soliman M; Lyubchich V; Gel YR
    Epidemics; 2019 Sep; 28():100345. PubMed ID: 31182294
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An ensemble learning based hybrid model and framework for air pollution forecasting.
    Chang YS; Abimannan S; Chiao HT; Lin CY; Huang YP
    Environ Sci Pollut Res Int; 2020 Oct; 27(30):38155-38168. PubMed ID: 32621183
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Applying Machine Learning Models with An Ensemble Approach for Accurate Real-Time Influenza Forecasting in Taiwan: Development and Validation Study.
    Cheng HY; Wu YC; Lin MH; Liu YL; Tsai YY; Wu JH; Pan KH; Ke CJ; Chen CM; Liu DP; Lin IF; Chuang JH
    J Med Internet Res; 2020 Aug; 22(8):e15394. PubMed ID: 32755888
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.