BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 34197331)

  • 81. Learning U-Net Based Multi-Scale Features in Encoding-Decoding for MR Image Brain Tissue Segmentation.
    Long JS; Ma GZ; Song EM; Jin RC
    Sensors (Basel); 2021 May; 21(9):. PubMed ID: 34067101
    [TBL] [Abstract][Full Text] [Related]  

  • 82. DRRNet: Dense Residual Refine Networks for Automatic Brain Tumor Segmentation.
    Sun J; Chen W; Peng S; Liu B
    J Med Syst; 2019 Jun; 43(7):221. PubMed ID: 31177346
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Deep CNN ensembles and suggestive annotations for infant brain MRI segmentation.
    Dolz J; Desrosiers C; Wang L; Yuan J; Shen D; Ben Ayed I
    Comput Med Imaging Graph; 2020 Jan; 79():101660. PubMed ID: 31785402
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Segmentation of rectal tumor from multi-parametric MRI images using an attention-based fusion network.
    Dou M; Chen Z; Tang Y; Sheng L; Zhou J; Wang X; Yao Y
    Med Biol Eng Comput; 2023 Sep; 61(9):2379-2389. PubMed ID: 37084029
    [TBL] [Abstract][Full Text] [Related]  

  • 85. A 3D Spatially Weighted Network for Segmentation of Brain Tissue From MRI.
    Sun L; Ma W; Ding X; Huang Y; Liang D; Paisley J
    IEEE Trans Med Imaging; 2020 Apr; 39(4):898-909. PubMed ID: 31449009
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Pancreas segmentation using a dual-input v-mesh network.
    Wang Y; Gong G; Kong D; Li Q; Dai J; Zhang H; Qu J; Liu X; Xue J
    Med Image Anal; 2021 Apr; 69():101958. PubMed ID: 33550009
    [TBL] [Abstract][Full Text] [Related]  

  • 87. DENSE-INception U-net for medical image segmentation.
    Zhang Z; Wu C; Coleman S; Kerr D
    Comput Methods Programs Biomed; 2020 Aug; 192():105395. PubMed ID: 32163817
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Automatic bladder segmentation from CT images using deep CNN and 3D fully connected CRF-RNN.
    Xu X; Zhou F; Liu B
    Int J Comput Assist Radiol Surg; 2018 Jul; 13(7):967-975. PubMed ID: 29556905
    [TBL] [Abstract][Full Text] [Related]  

  • 89. MIMoSA: An Automated Method for Intermodal Segmentation Analysis of Multiple Sclerosis Brain Lesions.
    Valcarcel AM; Linn KA; Vandekar SN; Satterthwaite TD; Muschelli J; Calabresi PA; Pham DL; Martin ML; Shinohara RT
    J Neuroimaging; 2018 Jul; 28(4):389-398. PubMed ID: 29516669
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Multi-level adaptive segmentation of multi-parameter MR brain images.
    Zavaljevski A; Dhawan AP; Gaskil M; Ball W; Johnson JD
    Comput Med Imaging Graph; 2000; 24(2):87-98. PubMed ID: 10767588
    [TBL] [Abstract][Full Text] [Related]  

  • 91. AdaEn-Net: An ensemble of adaptive 2D-3D Fully Convolutional Networks for medical image segmentation.
    Baldeon Calisto M; Lai-Yuen SK
    Neural Netw; 2020 Jun; 126():76-94. PubMed ID: 32203876
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Fusion based on attention mechanism and context constraint for multi-modal brain tumor segmentation.
    Zhou T; Canu S; Ruan S
    Comput Med Imaging Graph; 2020 Dec; 86():101811. PubMed ID: 33232843
    [TBL] [Abstract][Full Text] [Related]  

  • 93. A stochastic multi-agent approach for medical-image segmentation: Application to tumor segmentation in brain MR images.
    Bennai MT; Guessoum Z; Mazouzi S; Cormier S; Mezghiche M
    Artif Intell Med; 2020 Nov; 110():101980. PubMed ID: 33250150
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Automated segmentation of the left ventricle from MR cine imaging based on deep learning architecture.
    Qin W; Wu Y; Li S; Chen Y; Yang Y; Liu X; Zheng H; Liang D; Hu Z
    Biomed Phys Eng Express; 2020 Feb; 6(2):025009. PubMed ID: 33438635
    [TBL] [Abstract][Full Text] [Related]  

  • 95. A Deep Spatial Context Guided Framework for Infant Brain Subcortical Segmentation.
    Chen L; Wu Z; Hu D; Wang Y; Mo Z; Wang L; Lin W; Shen D; Li G;
    Med Image Comput Comput Assist Interv; 2020 Oct; 12267():646-656. PubMed ID: 33564753
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Deep neural network for automated simultaneous intervertebral disc (IVDs) identification and segmentation of multi-modal MR images.
    Das P; Pal C; Acharyya A; Chakrabarti A; Basu S
    Comput Methods Programs Biomed; 2021 Jun; 205():106074. PubMed ID: 33906011
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Dilated Dense U-Net for Infant Hippocampus Subfield Segmentation.
    Zhu H; Shi F; Wang L; Hung SC; Chen MH; Wang S; Lin W; Shen D
    Front Neuroinform; 2019; 13():30. PubMed ID: 31068797
    [TBL] [Abstract][Full Text] [Related]  

  • 98. FULLY CONVOLUTIONAL NETWORKS FOR MULTI-MODALITY ISOINTENSE INFANT BRAIN IMAGE SEGMENTATION.
    Nie D; Wang L; Gao Y; Shen D
    Proc IEEE Int Symp Biomed Imaging; 2016; 2016():1342-1345. PubMed ID: 27668065
    [TBL] [Abstract][Full Text] [Related]  

  • 99. MLP-Res-Unet:MLPs and residual blocks-based U-shaped network intervertebral disc segmentation of multi-modal MR spine images.
    Liu H; Lu S; Zhao F
    Curr Med Imaging; 2023 Apr; ():. PubMed ID: 37070453
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Self-Enhanced Mixed Attention Network for Three-Modal Images Few-Shot Semantic Segmentation.
    Song K; Zhang Y; Bao Y; Zhao Y; Yan Y
    Sensors (Basel); 2023 Jul; 23(14):. PubMed ID: 37514905
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.