These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 34197406)

  • 1. Semiconductor-based selective emitter with a sharp cutoff for thermophotovoltaic energy conversion.
    Ni Q; Ramesh R; Chen CA; Wang L
    Opt Lett; 2021 Jul; 46(13):3163-3166. PubMed ID: 34197406
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-Selectivity Planar Thermal Emitter with a Stable Temperature over 1400 K for a Thermophotovoltaic System.
    Wang J; Wu Z; Liu Y; Hou S; Qiao Y; Tang Z; Mao J; Zhang Q; Cao F
    ACS Appl Mater Interfaces; 2023 Oct; 15(42):49123-49131. PubMed ID: 37842846
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Near-infrared-to-visible highly selective thermal emitters based on an intrinsic semiconductor.
    Asano T; Suemitsu M; Hashimoto K; De Zoysa M; Shibahara T; Tsutsumi T; Noda S
    Sci Adv; 2016 Dec; 2(12):e1600499. PubMed ID: 28028532
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simple Rectangular Gratings as a Near-Field "Anti-Reflection" Pattern for GaSb TPV Cells.
    Yu H; Liu D; Yang Z; Duan Y
    Sci Rep; 2017 Apr; 7(1):1026. PubMed ID: 28432306
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Review on Thermophotovoltaic Cell and Its Applications in Energy Conversion: Issues and Recommendations.
    Gamel MMA; Lee HJ; Rashid WESWA; Ker PJ; Yau LK; Hannan MA; Jamaludin MZ
    Materials (Basel); 2021 Aug; 14(17):. PubMed ID: 34501032
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Performance analysis of experimentally viable photonic crystal enhanced thermophotovoltaic systems.
    Yeng YX; Chan WR; Rinnerbauer V; Joannopoulos JD; Soljačić M; Celanovic I
    Opt Express; 2013 Nov; 21 Suppl 6():A1035-51. PubMed ID: 24514924
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design of thermophotovoltaics for tolerance of parasitic absorption.
    Raman VK; Burger T; Lenert A
    Opt Express; 2019 Oct; 27(22):31757-31772. PubMed ID: 31684401
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermophotovoltaics with spectral and angular selective doped-oxide thermal emitters.
    Sakr E; Bermel P
    Opt Express; 2017 Oct; 25(20):A880-A895. PubMed ID: 29041299
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thin-film 'Thermal Well' Emitters and Absorbers for High-Efficiency Thermophotovoltaics.
    Tong JK; Hsu WC; Huang Y; Boriskina SV; Chen G
    Sci Rep; 2015 Jun; 5():10661. PubMed ID: 26030711
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-Temperature Selective Emitter Design and Materials: Titanium Aluminum Nitride Alloys for Thermophotovoltaics.
    Jeon N; Mandia DJ; Gray SK; Foley JJ; Martinson ABF
    ACS Appl Mater Interfaces; 2019 Nov; 11(44):41347-41355. PubMed ID: 31652047
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Semitransparent thermophotovoltaics for efficient utilization of moderate temperature thermal radiation.
    Lenert A; Burger T; Roy-Layinde B; Lentz R; Berquist ZJ; Forrest SR
    Proc Natl Acad Sci U S A; 2022 Nov; 119(48):e2215977119. PubMed ID: 36409918
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimal Design of Wavelength Selective Thermal Emitter for Thermophotovoltaic Applications.
    Ghanekar A; Sun M; Zhang Z; Zheng Y
    J Therm Sci Eng Appl; 2018 Feb; 10(1):0110041-110044. PubMed ID: 29051797
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Overcoming the black body limit in plasmonic and graphene near-field thermophotovoltaic systems.
    Ilic O; Jablan M; Joannopoulos JD; Celanovic I; Soljacić M
    Opt Express; 2012 May; 20(10):A366-84. PubMed ID: 22712094
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanostructured chromium-based broadband absorbers and emitters to realize thermally stable solar thermophotovoltaic systems.
    Abbas MA; Kim J; Rana AS; Kim I; Rehman B; Ahmad Z; Massoud Y; Seong J; Badloe T; Park K; Mehmood MQ; Zubair M; Rho J
    Nanoscale; 2022 May; 14(17):6425-6436. PubMed ID: 35416207
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High efficiency thermophotovoltaic emitter by metamaterial-based nano-pyramid array.
    Gu W; Tang G; Tao W
    Opt Express; 2015 Nov; 23(24):30681-94. PubMed ID: 26698700
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermophotovoltaic efficiency of 40.
    LaPotin A; Schulte KL; Steiner MA; Buznitsky K; Kelsall CC; Friedman DJ; Tervo EJ; France RM; Young MR; Rohskopf A; Verma S; Wang EN; Henry A
    Nature; 2022 Apr; 604(7905):287-291. PubMed ID: 35418635
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-Temperature Carbonized Ceria Thermophotovoltaic Emitter beyond Tungsten.
    Oh S; Cho JW; Jeong D; Lee K; Lee EJ; Shin S; Kim SK; Nam Y
    ACS Appl Mater Interfaces; 2021 Sep; 13(36):42724-42731. PubMed ID: 34459586
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Module-Level Polaritonic Thermophotovoltaic Emitters via Hierarchical Sequential Learning.
    Wang Q; Huang Z; Li J; Huang GY; Wang D; Zhang H; Guo J; Ding M; Chen J; Zhang Z; Rui Z; Shang W; Xu JY; Zhang J; Shiomi J; Fu T; Deng T; Johnson SG; Xu H; Cui K
    Nano Lett; 2023 Feb; 23(4):1144-1151. PubMed ID: 36749930
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Novel and efficient Mie-metamaterial thermal emitter for thermophotovoltaic systems.
    Ghanekar A; Lin L; Zheng Y
    Opt Express; 2016 May; 24(10):A868-77. PubMed ID: 27409959
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mie-Metamaterials-Based Thermal Emitter for Near-Field Thermophotovoltaic Systems.
    Ghanekar A; Tian Y; Zhang S; Cui Y; Zheng Y
    Materials (Basel); 2017 Jul; 10(8):. PubMed ID: 28773241
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.