These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 34197446)

  • 1. High-spectral-resolution lidar for measuring tropospheric temperature profiles by means of Rayleigh-Brillouin scattering.
    Xu J; Witschas B; Kabelka PG; Liang K
    Opt Lett; 2021 Jul; 46(13):3320-3323. PubMed ID: 34197446
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Airborne temperature profiling in the troposphere during daytime by lidar utilizing Rayleigh-Brillouin scattering.
    Witschas B; Lemmerz C; Lux O; Marksteiner U; Reitebuch O; Schäfler A
    Opt Lett; 2021 Sep; 46(17):4132-4135. PubMed ID: 34469957
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Remote Sensing of Seawater Temperature and Salinity Profiles by the Brillouin Lidar Based on a Fizeau Interferometer and Multichannel Photomultiplier Tube.
    Wang Y; Xu Y; Chen P; Liang K
    Sensors (Basel); 2022 Dec; 23(1):. PubMed ID: 36617044
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Daytime measurements of atmospheric temperature profiles (2-15 km) by lidar utilizing Rayleigh-Brillouin scattering.
    Witschas B; Lemmerz C; Reitebuch O
    Opt Lett; 2014 Apr; 39(7):1972-5. PubMed ID: 24686652
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A systematic study of Rayleigh-Brillouin scattering in air, N₂, and O₂ gases.
    Gu Z; Ubachs W
    J Chem Phys; 2014 Sep; 141(10):104320. PubMed ID: 25217929
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Coherent high-spectral-resolution lidar for the measurement of the atmospheric Mie-Rayleigh-Brillouin backscatter spectrum.
    Chen X; Dai G; Wu S; Liu J; Yin B; Wang Q; Zhang Z; Qin S; Wang X
    Opt Express; 2022 Oct; 30(21):38060-38076. PubMed ID: 36258379
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rayleigh-Brillouin scattering profiles of air at different temperatures and pressures.
    Gu Z; Witschas B; van de Water W; Ubachs W
    Appl Opt; 2013 Jul; 52(19):4640-51. PubMed ID: 23842262
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Horizontal lidar measurements for the proof of spontaneous Rayleigh-Brillouin scattering in the atmosphere.
    Witschas B; Lemmerz C; Reitebuch O
    Appl Opt; 2012 Sep; 51(25):6207-19. PubMed ID: 22945169
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Temperature retrieval from Rayleigh-Brillouin scattering profiles measured in air.
    Witschas B; Gu Z; Ubachs W
    Opt Express; 2014 Dec; 22(24):29655-67. PubMed ID: 25606897
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spontaneous Rayleigh-Brillouin scattering of ultraviolet light in nitrogen, dry air, and moist air.
    Witschas B; Vieitez MO; van Duijn EJ; Reitebuch O; van de Water W; Ubachs W
    Appl Opt; 2010 Aug; 49(22):4217-27. PubMed ID: 20676176
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improved method for gas temperature and pressure retrieval in Brillouin lidar remote sensing.
    Zhang P; Liang K
    Appl Opt; 2021 Jan; 60(3):652-661. PubMed ID: 33690434
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analytical model for Rayleigh-Brillouin line shapes in air.
    Witschas B
    Appl Opt; 2011 Jan; 50(3):267-70. PubMed ID: 21263720
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Demonstration of a Rayleigh-Brillouin scattering spectrometer with a high spectral resolution for rapid gas temperature detection.
    Yan H; Wu T; Pi S; Wu Q; Ye C; He X
    Opt Lett; 2023 Nov; 48(22):5931-5934. PubMed ID: 37966755
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stratospheric temperature measurement with scanning Fabry-Perot interferometer for wind retrieval from mobile Rayleigh Doppler lidar.
    Xia H; Dou X; Shangguan M; Zhao R; Sun D; Wang C; Qiu J; Shu Z; Xue X; Han Y; Han Y
    Opt Express; 2014 Sep; 22(18):21775-89. PubMed ID: 25321553
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultraviolet high-spectral-resolution Rayleigh-Mie lidar with a dual-pass Fabry-Perot etalon for measuring atmospheric temperature profiles of the troposphere.
    Hua D; Uchida M; Kobayashi T
    Opt Lett; 2004 May; 29(10):1063-5. PubMed ID: 15181986
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Heterodyne high-spectral-resolution lidar.
    Chouza F; Witschas B; Reitebuch O
    Appl Opt; 2017 Oct; 56(29):8121-8134. PubMed ID: 29047675
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of a Rayleigh-Brillouin scattering spectrometer for fast high-gas-temperature measurements.
    Pi S; Wu T; Yan H; Yang J; Ye C; He X
    Opt Lett; 2024 Jul; 49(14):3850-3853. PubMed ID: 39008724
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultraviolet Rayleigh-Mie lidar with Mie-scattering correction by Fabry-Perot etalons for temperature profiling of the troposphere.
    Hua D; Uchida M; Kobayashi T
    Appl Opt; 2005 Mar; 44(7):1305-14. PubMed ID: 15765711
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of the Tenti S6 model for hydrocarbon fuels at elevated temperatures using filtered Rayleigh scattering measurements.
    Pu J; Sutton JA
    Opt Lett; 2020 Oct; 45(19):5579-5582. PubMed ID: 33001951
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Observation of vertical wind profiling with lidar based on correction of sensitivity.
    Shao J; Hua D; Wang L
    Appl Opt; 2020 Oct; 59(30):9376-9384. PubMed ID: 33104654
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.