BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 34197619)

  • 1. Strand-specific effect of Rad26 and TFIIS in rescuing transcriptional arrest by CAG trinucleotide repeat slip-outs.
    Xu J; Chong J; Wang D
    Nucleic Acids Res; 2021 Jul; 49(13):7618-7627. PubMed ID: 34197619
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evidence that Moderate Eviction of Spt5 and Promotion of Error-Free Transcriptional Bypass by Rad26 Facilitates Transcription Coupled Nucleotide Excision Repair.
    Selvam K; Ding B; Sharma R; Li S
    J Mol Biol; 2019 Mar; 431(7):1322-1338. PubMed ID: 30790631
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Opposite roles of transcription elongation factors Spt4/5 and Elf1 in RNA polymerase II transcription through B-form versus non-B DNA structures.
    Xu J; Chong J; Wang D
    Nucleic Acids Res; 2021 May; 49(9):4944-4953. PubMed ID: 33877330
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transcription factors TFIIF and TFIIS promote transcript elongation by RNA polymerase II by synergistic and independent mechanisms.
    Schweikhard V; Meng C; Murakami K; Kaplan CD; Kornberg RD; Block SM
    Proc Natl Acad Sci U S A; 2014 May; 111(18):6642-7. PubMed ID: 24733897
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural basis for the initiation of eukaryotic transcription-coupled DNA repair.
    Xu J; Lahiri I; Wang W; Wier A; Cianfrocco MA; Chong J; Hare AA; Dervan PB; DiMaio F; Leschziner AE; Wang D
    Nature; 2017 Nov; 551(7682):653-657. PubMed ID: 29168508
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The C-terminal repeat domain of Spt5 plays an important role in suppression of Rad26-independent transcription coupled repair.
    Ding B; LeJeune D; Li S
    J Biol Chem; 2010 Feb; 285(8):5317-26. PubMed ID: 20042611
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genome-wide role of Rad26 in promoting transcription-coupled nucleotide excision repair in yeast chromatin.
    Duan M; Selvam K; Wyrick JJ; Mao P
    Proc Natl Acad Sci U S A; 2020 Aug; 117(31):18608-18616. PubMed ID: 32690696
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Causes and consequences of RNA polymerase II stalling during transcript elongation.
    Noe Gonzalez M; Blears D; Svejstrup JQ
    Nat Rev Mol Cell Biol; 2021 Jan; 22(1):3-21. PubMed ID: 33208928
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tfb5 is partially dispensable for Rad26 mediated transcription coupled nucleotide excision repair in yeast.
    Ding B; Ruggiero C; Chen X; Li S
    DNA Repair (Amst); 2007 Nov; 6(11):1661-9. PubMed ID: 17644494
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DNA slip-outs cause RNA polymerase II arrest in vitro: potential implications for genetic instability.
    Salinas-Rios V; Belotserkovskii BP; Hanawalt PC
    Nucleic Acids Res; 2011 Sep; 39(17):7444-54. PubMed ID: 21666257
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Chromatin Remodeler Isw1 Prevents CAG Repeat Expansions During Transcription in
    Koch MR; House NCM; Cosetta CM; Jong RM; Salomon CG; Joyce CE; Philips EA; Su XA; Freudenreich CH
    Genetics; 2018 Mar; 208(3):963-976. PubMed ID: 29305386
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transcription coupled nucleotide excision repair in the yeast Saccharomyces cerevisiae: The ambiguous role of Rad26.
    Li S
    DNA Repair (Amst); 2015 Dec; 36():43-48. PubMed ID: 26429063
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular basis of transcriptional pausing, stalling, and transcription-coupled repair initiation.
    Oh J; Xu J; Chong J; Wang D
    Biochim Biophys Acta Gene Regul Mech; 2021 Jan; 1864(1):194659. PubMed ID: 33271312
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intrinsic translocation barrier as an initial step in pausing by RNA polymerase II.
    Imashimizu M; Kireeva ML; Lubkowska L; Gotte D; Parks AR; Strathern JN; Kashlev M
    J Mol Biol; 2013 Feb; 425(4):697-712. PubMed ID: 23238253
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A compromised yeast RNA polymerase II enhances UV sensitivity in the absence of global genome nucleotide excision repair.
    Wong JM; Ingles CJ
    Mol Gen Genet; 2001 Feb; 264(6):842-51. PubMed ID: 11254132
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Widespread Backtracking by RNA Pol II Is a Major Effector of Gene Activation, 5' Pause Release, Termination, and Transcription Elongation Rate.
    Sheridan RM; Fong N; D'Alessandro A; Bentley DL
    Mol Cell; 2019 Jan; 73(1):107-118.e4. PubMed ID: 30503775
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Elongation Factor TFIIS Prevents Transcription Stress and R-Loop Accumulation to Maintain Genome Stability.
    Zatreanu D; Han Z; Mitter R; Tumini E; Williams H; Gregersen L; Dirac-Svejstrup AB; Roma S; Stewart A; Aguilera A; Svejstrup JQ
    Mol Cell; 2019 Oct; 76(1):57-69.e9. PubMed ID: 31519522
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evidence that the elongation factor TFIIS plays a role in transcription initiation at GAL1 in Saccharomyces cerevisiae.
    Prather DM; Larschan E; Winston F
    Mol Cell Biol; 2005 Apr; 25(7):2650-9. PubMed ID: 15767671
    [TBL] [Abstract][Full Text] [Related]  

  • 19. RNA polymerase II trapped on a molecular treadmill: Structural basis of persistent transcriptional arrest by a minor groove DNA binder.
    Oh J; Jia T; Xu J; Chong J; Dervan PB; Wang D
    Proc Natl Acad Sci U S A; 2022 Jan; 119(3):. PubMed ID: 35022237
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In UV-irradiated Saccharomyces cerevisiae, overexpression of Swi2/Snf2 family member Rad26 increases transcription-coupled repair and repair of the non-transcribed strand.
    Bucheli M; Sweder K
    Mol Microbiol; 2004 Jun; 52(6):1653-63. PubMed ID: 15186415
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.