These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
180 related articles for article (PubMed ID: 34197619)
1. Strand-specific effect of Rad26 and TFIIS in rescuing transcriptional arrest by CAG trinucleotide repeat slip-outs. Xu J; Chong J; Wang D Nucleic Acids Res; 2021 Jul; 49(13):7618-7627. PubMed ID: 34197619 [TBL] [Abstract][Full Text] [Related]
2. Evidence that Moderate Eviction of Spt5 and Promotion of Error-Free Transcriptional Bypass by Rad26 Facilitates Transcription Coupled Nucleotide Excision Repair. Selvam K; Ding B; Sharma R; Li S J Mol Biol; 2019 Mar; 431(7):1322-1338. PubMed ID: 30790631 [TBL] [Abstract][Full Text] [Related]
3. Opposite roles of transcription elongation factors Spt4/5 and Elf1 in RNA polymerase II transcription through B-form versus non-B DNA structures. Xu J; Chong J; Wang D Nucleic Acids Res; 2021 May; 49(9):4944-4953. PubMed ID: 33877330 [TBL] [Abstract][Full Text] [Related]
4. Transcription factors TFIIF and TFIIS promote transcript elongation by RNA polymerase II by synergistic and independent mechanisms. Schweikhard V; Meng C; Murakami K; Kaplan CD; Kornberg RD; Block SM Proc Natl Acad Sci U S A; 2014 May; 111(18):6642-7. PubMed ID: 24733897 [TBL] [Abstract][Full Text] [Related]
5. Structural basis for the initiation of eukaryotic transcription-coupled DNA repair. Xu J; Lahiri I; Wang W; Wier A; Cianfrocco MA; Chong J; Hare AA; Dervan PB; DiMaio F; Leschziner AE; Wang D Nature; 2017 Nov; 551(7682):653-657. PubMed ID: 29168508 [TBL] [Abstract][Full Text] [Related]
6. The C-terminal repeat domain of Spt5 plays an important role in suppression of Rad26-independent transcription coupled repair. Ding B; LeJeune D; Li S J Biol Chem; 2010 Feb; 285(8):5317-26. PubMed ID: 20042611 [TBL] [Abstract][Full Text] [Related]
7. Genome-wide role of Rad26 in promoting transcription-coupled nucleotide excision repair in yeast chromatin. Duan M; Selvam K; Wyrick JJ; Mao P Proc Natl Acad Sci U S A; 2020 Aug; 117(31):18608-18616. PubMed ID: 32690696 [TBL] [Abstract][Full Text] [Related]
8. Causes and consequences of RNA polymerase II stalling during transcript elongation. Noe Gonzalez M; Blears D; Svejstrup JQ Nat Rev Mol Cell Biol; 2021 Jan; 22(1):3-21. PubMed ID: 33208928 [TBL] [Abstract][Full Text] [Related]
9. Tfb5 is partially dispensable for Rad26 mediated transcription coupled nucleotide excision repair in yeast. Ding B; Ruggiero C; Chen X; Li S DNA Repair (Amst); 2007 Nov; 6(11):1661-9. PubMed ID: 17644494 [TBL] [Abstract][Full Text] [Related]
10. DNA slip-outs cause RNA polymerase II arrest in vitro: potential implications for genetic instability. Salinas-Rios V; Belotserkovskii BP; Hanawalt PC Nucleic Acids Res; 2011 Sep; 39(17):7444-54. PubMed ID: 21666257 [TBL] [Abstract][Full Text] [Related]
11. The Chromatin Remodeler Isw1 Prevents CAG Repeat Expansions During Transcription in Koch MR; House NCM; Cosetta CM; Jong RM; Salomon CG; Joyce CE; Philips EA; Su XA; Freudenreich CH Genetics; 2018 Mar; 208(3):963-976. PubMed ID: 29305386 [TBL] [Abstract][Full Text] [Related]
12. Transcription coupled nucleotide excision repair in the yeast Saccharomyces cerevisiae: The ambiguous role of Rad26. Li S DNA Repair (Amst); 2015 Dec; 36():43-48. PubMed ID: 26429063 [TBL] [Abstract][Full Text] [Related]
13. Molecular basis of transcriptional pausing, stalling, and transcription-coupled repair initiation. Oh J; Xu J; Chong J; Wang D Biochim Biophys Acta Gene Regul Mech; 2021 Jan; 1864(1):194659. PubMed ID: 33271312 [TBL] [Abstract][Full Text] [Related]
14. Intrinsic translocation barrier as an initial step in pausing by RNA polymerase II. Imashimizu M; Kireeva ML; Lubkowska L; Gotte D; Parks AR; Strathern JN; Kashlev M J Mol Biol; 2013 Feb; 425(4):697-712. PubMed ID: 23238253 [TBL] [Abstract][Full Text] [Related]
15. A compromised yeast RNA polymerase II enhances UV sensitivity in the absence of global genome nucleotide excision repair. Wong JM; Ingles CJ Mol Gen Genet; 2001 Feb; 264(6):842-51. PubMed ID: 11254132 [TBL] [Abstract][Full Text] [Related]
16. Widespread Backtracking by RNA Pol II Is a Major Effector of Gene Activation, 5' Pause Release, Termination, and Transcription Elongation Rate. Sheridan RM; Fong N; D'Alessandro A; Bentley DL Mol Cell; 2019 Jan; 73(1):107-118.e4. PubMed ID: 30503775 [TBL] [Abstract][Full Text] [Related]
17. Elongation Factor TFIIS Prevents Transcription Stress and R-Loop Accumulation to Maintain Genome Stability. Zatreanu D; Han Z; Mitter R; Tumini E; Williams H; Gregersen L; Dirac-Svejstrup AB; Roma S; Stewart A; Aguilera A; Svejstrup JQ Mol Cell; 2019 Oct; 76(1):57-69.e9. PubMed ID: 31519522 [TBL] [Abstract][Full Text] [Related]
18. Evidence that the elongation factor TFIIS plays a role in transcription initiation at GAL1 in Saccharomyces cerevisiae. Prather DM; Larschan E; Winston F Mol Cell Biol; 2005 Apr; 25(7):2650-9. PubMed ID: 15767671 [TBL] [Abstract][Full Text] [Related]
19. RNA polymerase II trapped on a molecular treadmill: Structural basis of persistent transcriptional arrest by a minor groove DNA binder. Oh J; Jia T; Xu J; Chong J; Dervan PB; Wang D Proc Natl Acad Sci U S A; 2022 Jan; 119(3):. PubMed ID: 35022237 [TBL] [Abstract][Full Text] [Related]
20. In UV-irradiated Saccharomyces cerevisiae, overexpression of Swi2/Snf2 family member Rad26 increases transcription-coupled repair and repair of the non-transcribed strand. Bucheli M; Sweder K Mol Microbiol; 2004 Jun; 52(6):1653-63. PubMed ID: 15186415 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]