BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 34197860)

  • 1. GANDA: A deep generative adversarial network conditionally generates intratumoral nanoparticles distribution pixels-to-pixels.
    Tang Y; Zhang J; He D; Miao W; Liu W; Li Y; Lu G; Wu F; Wang S
    J Control Release; 2021 Aug; 336():336-343. PubMed ID: 34197860
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Generative adversarial network-based super-resolution of diffusion-weighted imaging: Application to tumour radiomics in breast cancer.
    Fan M; Liu Z; Xu M; Wang S; Zeng T; Gao X; Li L
    NMR Biomed; 2020 Aug; 33(8):e4345. PubMed ID: 32521567
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Super-resolution construction of intravascular ultrasound images using generative adversarial networks].
    Wu Y; Yang F; Huang J; Liu Y
    Nan Fang Yi Ke Da Xue Xue Bao; 2019 Jan; 39(1):82-87. PubMed ID: 30692071
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Conditional generative adversarial network for 3D rigid-body motion correction in MRI.
    Johnson PM; Drangova M
    Magn Reson Med; 2019 Sep; 82(3):901-910. PubMed ID: 31006909
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A material decomposition method for dual-energy CT via dual interactive Wasserstein generative adversarial networks.
    Shi Z; Li H; Cao Q; Wang Z; Cheng M
    Med Phys; 2021 Jun; 48(6):2891-2905. PubMed ID: 33704786
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multi-sequence MR image-based synthetic CT generation using a generative adversarial network for head and neck MRI-only radiotherapy.
    Qi M; Li Y; Wu A; Jia Q; Li B; Sun W; Dai Z; Lu X; Zhou L; Deng X; Song T
    Med Phys; 2020 Apr; 47(4):1880-1894. PubMed ID: 32027027
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Virtual Interpolation Images of Tumor Development and Growth on Breast Ultrasound Image Synthesis With Deep Convolutional Generative Adversarial Networks.
    Fujioka T; Kubota K; Mori M; Katsuta L; Kikuchi Y; Kimura K; Kimura M; Adachi M; Oda G; Nakagawa T; Kitazume Y; Tateishi U
    J Ultrasound Med; 2021 Jan; 40(1):61-69. PubMed ID: 32592409
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improving CBCT quality to CT level using deep learning with generative adversarial network.
    Zhang Y; Yue N; Su MY; Liu B; Ding Y; Zhou Y; Wang H; Kuang Y; Nie K
    Med Phys; 2021 Jun; 48(6):2816-2826. PubMed ID: 33259647
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultrasound deep beamforming using a multiconstrained hybrid generative adversarial network.
    Zhou Z; Guo Y; Wang Y
    Med Image Anal; 2021 Jul; 71():102086. PubMed ID: 33979760
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Generative adversarial networks with decoder-encoder output noises.
    Zhong G; Gao W; Liu Y; Yang Y; Wang DH; Huang K
    Neural Netw; 2020 Jul; 127():19-28. PubMed ID: 32315932
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 3D conditional generative adversarial networks for high-quality PET image estimation at low dose.
    Wang Y; Yu B; Wang L; Zu C; Lalush DS; Lin W; Wu X; Zhou J; Shen D; Zhou L
    Neuroimage; 2018 Jul; 174():550-562. PubMed ID: 29571715
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deep generative neural networks for spectral image processing.
    Mishra P
    Anal Chim Acta; 2022 Jan; 1191():339308. PubMed ID: 35033246
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Semi-supervised segmentation of lesion from breast ultrasound images with attentional generative adversarial network.
    Han L; Huang Y; Dou H; Wang S; Ahamad S; Luo H; Liu Q; Fan J; Zhang J
    Comput Methods Programs Biomed; 2020 Jun; 189():105275. PubMed ID: 31978805
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Use of Deep Learning to Develop and Analyze Computational Hematoxylin and Eosin Staining of Prostate Core Biopsy Images for Tumor Diagnosis.
    Rana A; Lowe A; Lithgow M; Horback K; Janovitz T; Da Silva A; Tsai H; Shanmugam V; Bayat A; Shah P
    JAMA Netw Open; 2020 May; 3(5):e205111. PubMed ID: 32432709
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Generation of High-resolution Lung Computed Tomography Images using Generative Adversarial Networks.
    Hsieh KY; Tsai HC; Chen GY
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():2400-2403. PubMed ID: 33018490
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-content image generation for drug discovery using generative adversarial networks.
    Hussain S; Anees A; Das A; Nguyen BP; Marzuki M; Lin S; Wright G; Singhal A
    Neural Netw; 2020 Dec; 132():353-363. PubMed ID: 32977280
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Application of a Generative Adversarial Network in Image Reconstruction of Magnetic Induction Tomography.
    Yang D; Liu J; Wang Y; Xu B; Wang X
    Sensors (Basel); 2021 Jun; 21(11):. PubMed ID: 34205157
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Retrospective correction of motion-affected MR images using deep learning frameworks.
    Küstner T; Armanious K; Yang J; Yang B; Schick F; Gatidis S
    Magn Reson Med; 2019 Oct; 82(4):1527-1540. PubMed ID: 31081955
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Automated cartilage and meniscus segmentation of knee MRI with conditional generative adversarial networks.
    Gaj S; Yang M; Nakamura K; Li X
    Magn Reson Med; 2020 Jul; 84(1):437-449. PubMed ID: 31793071
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Learning from adversarial medical images for X-ray breast mass segmentation.
    Shen T; Gou C; Wang FY; He Z; Chen W
    Comput Methods Programs Biomed; 2019 Oct; 180():105012. PubMed ID: 31421601
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.