These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
168 related articles for article (PubMed ID: 34197994)
1. Three-dimensional porous gas-foamed electrospun nanofiber scaffold for cartilage regeneration. Chen Y; Xu W; Shafiq M; Tang J; Hao J; Xie X; Yuan Z; Xiao X; Liu Y; Mo X J Colloid Interface Sci; 2021 Dec; 603():94-109. PubMed ID: 34197994 [TBL] [Abstract][Full Text] [Related]
2. Chondroitin sulfate cross-linked three-dimensional tailored electrospun scaffolds for cartilage regeneration. Chen Y; Xu W; Shafiq M; Song D; Xie X; Yuan Z; El-Newehy M; El-Hamshary H; Morsi Y; Liu Y; Mo X Biomater Adv; 2022 Mar; 134():112643. PubMed ID: 35581067 [TBL] [Abstract][Full Text] [Related]
3. Superabsorbent 3D Scaffold Based on Electrospun Nanofibers for Cartilage Tissue Engineering. Chen W; Chen S; Morsi Y; El-Hamshary H; El-Newhy M; Fan C; Mo X ACS Appl Mater Interfaces; 2016 Sep; 8(37):24415-25. PubMed ID: 27559926 [TBL] [Abstract][Full Text] [Related]
4. Gas foaming of electrospun poly(L-lactide-co-caprolactone)/silk fibroin nanofiber scaffolds to promote cellular infiltration and tissue regeneration. Chen Y; Jia Z; Shafiq M; Xie X; Xiao X; Castro R; Rodrigues J; Wu J; Zhou G; Mo X Colloids Surf B Biointerfaces; 2021 May; 201():111637. PubMed ID: 33639507 [TBL] [Abstract][Full Text] [Related]
5. Three-Dimensional Porous Scaffolds with Biomimetic Microarchitecture and Bioactivity for Cartilage Tissue Engineering. Li Y; Liu Y; Xun X; Zhang W; Xu Y; Gu D ACS Appl Mater Interfaces; 2019 Oct; 11(40):36359-36370. PubMed ID: 31509372 [TBL] [Abstract][Full Text] [Related]
6. Cartilage regeneration with highly-elastic three-dimensional scaffolds prepared from biodegradable poly(L-lactide-co-epsilon-caprolactone). Jung Y; Park MS; Lee JW; Kim YH; Kim SH; Kim SH Biomaterials; 2008 Dec; 29(35):4630-6. PubMed ID: 18804279 [TBL] [Abstract][Full Text] [Related]
7. Electrospun silk fibroin/poly(lactide-co-ε-caprolactone) nanofibrous scaffolds for bone regeneration. Wang Z; Lin M; Xie Q; Sun H; Huang Y; Zhang D; Yu Z; Bi X; Chen J; Wang J; Shi W; Gu P; Fan X Int J Nanomedicine; 2016; 11():1483-500. PubMed ID: 27114708 [TBL] [Abstract][Full Text] [Related]
8. A viscoelastic chitosan-modified three-dimensional porous poly(L-lactide-co-ε-caprolactone) scaffold for cartilage tissue engineering. Li C; Wang L; Yang Z; Kim G; Chen H; Ge Z J Biomater Sci Polym Ed; 2012; 23(1-4):405-24. PubMed ID: 21310105 [TBL] [Abstract][Full Text] [Related]
10. TGF-β3 encapsulated PLCL scaffold by a supercritical CO2-HFIP co-solvent system for cartilage tissue engineering. Kim SH; Kim SH; Jung Y J Control Release; 2015 May; 206():101-7. PubMed ID: 25804870 [TBL] [Abstract][Full Text] [Related]
11. Combinatory approach for developing silk fibroin scaffolds for cartilage regeneration. Ribeiro VP; da Silva Morais A; Maia FR; Canadas RF; Costa JB; Oliveira AL; Oliveira JM; Reis RL Acta Biomater; 2018 May; 72():167-181. PubMed ID: 29626700 [TBL] [Abstract][Full Text] [Related]
12. The effect of hybridization of hydrogels and poly(L-lactide-co-epsilon-caprolactone) scaffolds on cartilage tissue engineering. Jung Y; Kim SH; Kim YH; Kim SH J Biomater Sci Polym Ed; 2010; 21(5):581-92. PubMed ID: 20338093 [TBL] [Abstract][Full Text] [Related]
13. Silk fibroin-chondroitin sulfate scaffold with immuno-inhibition property for articular cartilage repair. Zhou F; Zhang X; Cai D; Li J; Mu Q; Zhang W; Zhu S; Jiang Y; Shen W; Zhang S; Ouyang HW Acta Biomater; 2017 Nov; 63():64-75. PubMed ID: 28890259 [TBL] [Abstract][Full Text] [Related]
14. Application of an elastic biodegradable poly(L-lactide-co-epsilon-caprolactone) scaffold for cartilage tissue regeneration. Jung Y; Kim SH; You HJ; Kim SH; Kim YH; Min BG J Biomater Sci Polym Ed; 2008; 19(8):1073-85. PubMed ID: 18644232 [TBL] [Abstract][Full Text] [Related]
15. Biofabrication of poly(l-lactide-co-ε-caprolactone)/silk fibroin scaffold for the application as superb anti-calcification tissue engineered prosthetic valve. Wang X; Liu J; Jing H; Li B; Sun Z; Li B; Kong D; Leng X; Wang Z Mater Sci Eng C Mater Biol Appl; 2021 Feb; 121():111872. PubMed ID: 33579497 [TBL] [Abstract][Full Text] [Related]
16. Fabrication of electrospun poly(L-lactide-co-ε-caprolactone)/collagen nanoyarn network as a novel, three-dimensional, macroporous, aligned scaffold for tendon tissue engineering. Xu Y; Wu J; Wang H; Li H; Di N; Song L; Li S; Li D; Xiang Y; Liu W; Mo X; Zhou Q Tissue Eng Part C Methods; 2013 Dec; 19(12):925-36. PubMed ID: 23557537 [TBL] [Abstract][Full Text] [Related]
17. Fabrication and evaluation of poly(epsilon-caprolactone)/silk fibroin blend nanofibrous scaffold. Lim JS; Ki CS; Kim JW; Lee KG; Kang SW; Kweon HY; Park YH Biopolymers; 2012 May; 97(5):265-75. PubMed ID: 22169927 [TBL] [Abstract][Full Text] [Related]
18. Composite poly(l-lactic-acid)/silk fibroin scaffold prepared by electrospinning promotes chondrogenesis for cartilage tissue engineering. Li Z; Liu P; Yang T; Sun Y; You Q; Li J; Wang Z; Han B J Biomater Appl; 2016 May; 30(10):1552-65. PubMed ID: 27059497 [TBL] [Abstract][Full Text] [Related]
19. A novel knitted scaffold made of microfiber/nanofiber core-sheath yarns for tendon tissue engineering. Cai J; Xie X; Li D; Wang L; Jiang J; Mo X; Zhao J Biomater Sci; 2020 Aug; 8(16):4413-4425. PubMed ID: 32648862 [TBL] [Abstract][Full Text] [Related]
20. Evaluation of a simple off-the-shelf bi-layered vascular scaffold based on poly(L-lactide-co-ε-caprolactone)/silk fibroin in vitro and in vivo. Jin D; Hu J; Xia D; Liu A; Kuang H; Du J; Mo X; Yin M Int J Nanomedicine; 2019; 14():4261-4276. PubMed ID: 31289441 [No Abstract] [Full Text] [Related] [Next] [New Search]