These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 34198025)

  • 1. Monte Carlo transport of swift protons and light ions in water: The influence of excitation cross sections, relativistic effects, and Auger electron emission in w-values.
    Tessaro VB; Gervais B; Poignant F; Beuve M; Galassi ME
    Phys Med; 2021 Aug; 88():71-85. PubMed ID: 34198025
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of a Monte Carlo track structure code for low-energy protons in water.
    Uehara S; Toburen LH; Nikjoo H
    Int J Radiat Biol; 2001 Feb; 77(2):139-54. PubMed ID: 11236921
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cross sections for bare and dressed carbon ions in water and neon.
    Liamsuwan T; Nikjoo H
    Phys Med Biol; 2013 Feb; 58(3):641-72. PubMed ID: 23318561
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Track structure of protons and other light ions in liquid water: applications of the LIonTrack code at the nanometer scale.
    Bäckström G; Galassi ME; Tilly N; Ahnesjö A; Fernández-Varea JM
    Med Phys; 2013 Jun; 40(6):064101. PubMed ID: 23718619
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Secondary particle production in tissue-like and shielding materials for light and heavy ions calculated with the Monte-Carlo code SHIELD-HIT.
    Gudowska I; Andreo P; Sobolevsky N
    J Radiat Res; 2002 Dec; 43 Suppl():S93-7. PubMed ID: 12793738
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Energy Deposition around Swift Carbon-Ion Tracks in Liquid Water.
    de Vera P; Taioli S; Trevisanutto PE; Dapor M; Abril I; Simonucci S; Garcia-Molina R
    Int J Mol Sci; 2022 May; 23(11):. PubMed ID: 35682798
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Monte Carlo track structure code for electrons (approximately 10 eV-10 keV) and protons (approximately 0.3-10 MeV) in water: partitioning of energy and collision events.
    Emfietzoglou D; Papamichael G; Kostarelos K; Moscovitch M
    Phys Med Biol; 2000 Nov; 45(11):3171-94. PubMed ID: 11098897
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lithium inelastic cross-sections and their impact on micro and nano dosimetry of boron neutron capture.
    D-Kondo N; Ortiz R; Faddegon B; Incerti S; Tran HN; Francis Z; Moreno Barbosa E; Schuemann J; Ramos-Méndez J
    Phys Med Biol; 2024 Jul; 69(14):. PubMed ID: 38964312
    [No Abstract]   [Full Text] [Related]  

  • 9. Ion beam transport in tissue-like media using the Monte Carlo code SHIELD-HIT.
    Gudowska I; Sobolevsky N; Andreo P; Belkić D; Brahme A
    Phys Med Biol; 2004 May; 49(10):1933-58. PubMed ID: 15214534
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Monte Carlo calculated stopping-power ratios, water/air, for clinical proton dosimetry (50-250 MeV).
    Medin J; Andreo P
    Phys Med Biol; 1997 Jan; 42(1):89-105. PubMed ID: 9015811
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison and assessment of electron cross sections for Monte Carlo track structure codes.
    Uehara S; Nikjoo H; Goodhead DT
    Radiat Res; 1999 Aug; 152(2):202-13. PubMed ID: 10409331
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Uncertainties in Monte Carlo-based absorbed dose calculations for an experimental benchmark.
    Renner F; Wulff J; Kapsch RP; Zink K
    Phys Med Biol; 2015 Oct; 60(19):7637-53. PubMed ID: 26389610
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A systematic Monte Carlo study of secondary electron fluence perturbation in clinical proton beams (70-250 MeV) for cylindrical and spherical ion chambers.
    Verhaegen F; Palmans H
    Med Phys; 2001 Oct; 28(10):2088-95. PubMed ID: 11695770
    [TBL] [Abstract][Full Text] [Related]  

  • 14. EPOTRAN: a full-differential Monte Carlo code for electron and positron transport in liquid and gaseous water.
    Champion C; Le Loirec C; Stosic B
    Int J Radiat Biol; 2012 Jan; 88(1-2):54-61. PubMed ID: 22098415
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Calculation of heavy-ion tracks in liquid water.
    Hamm RN; Turner JE; Ritchie RH; Wright HA
    Radiat Res Suppl; 1985; 8():S20-6. PubMed ID: 3003783
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microdosimetry of the Auger electron emitting 123I radionuclide using Geant4-DNA simulations.
    Fourie H; Newman RT; Slabbert JP
    Phys Med Biol; 2015 Apr; 60(8):3333-46. PubMed ID: 25825914
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differential and integral W-values for ionization in gaseous water under electron and proton irradiation: consistency of inelastic collision cross sections.
    La Verne JA; Mozumder A
    Radiat Res; 1992 Jul; 131(1):1-9. PubMed ID: 1320765
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Monte Carlo simulations on the water-to-air stopping power ratio for carbon ion dosimetry.
    Henkner K; Bassler N; Sobolevsky N; Jäkel O
    Med Phys; 2009 Apr; 36(4):1230-5. PubMed ID: 19472630
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Monte Carlo computation of 3D distributions of stopping power ratios in light ion beam therapy using GATE-RTion.
    Bolsa-Ferruz M; Palmans H; Boersma D; Stock M; Grevillot L
    Med Phys; 2021 May; 48(5):2580-2591. PubMed ID: 33465819
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of various Monte Carlo track structure codes for energetic electrons in gaseous and liquid water.
    Nikjoo H; Uehara S
    Basic Life Sci; 1994; 63():167-84; discussion 184-5. PubMed ID: 7755542
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.