These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
180 related articles for article (PubMed ID: 34198174)
1. Glacial changes over the Himalayan Beas basin under global warming. Dixit A; Sahany S; Kulkarni AV J Environ Manage; 2021 Oct; 295():113101. PubMed ID: 34198174 [TBL] [Abstract][Full Text] [Related]
2. Research on the evolution characteristics of future climate change in West Liao River Basin. Zhao H; Wang Z; Li X; Chu Z; Zhao C; Zhao F Environ Sci Pollut Res Int; 2022 Jan; 29(1):509-517. PubMed ID: 34333747 [TBL] [Abstract][Full Text] [Related]
3. Historical and projected evolutions of glaciers in response to climate change in High Mountain Asia. Yang L; Zhao G; Mu X; Liu Y; Tian P; Puqiong ; Danzengbandian Environ Res; 2023 Nov; 237(Pt 2):117037. PubMed ID: 37659644 [TBL] [Abstract][Full Text] [Related]
4. Hydrological projections over the Upper Indus Basin at 1.5 °C and 2.0 °C temperature increase. Kiani RS; Ali S; Ashfaq M; Khan F; Muhammad S; Reboita MS; Farooqi A Sci Total Environ; 2021 Sep; 788():147759. PubMed ID: 34134357 [TBL] [Abstract][Full Text] [Related]
5. Hydrological modelling of a snow/glacier-fed western Himalayan basin to simulate the current and future streamflows under changing climate scenarios. Shukla S; Jain SK; Kansal ML Sci Total Environ; 2021 Nov; 795():148871. PubMed ID: 34378536 [TBL] [Abstract][Full Text] [Related]
6. Mass balance estimation of Mulkila glacier, Western Himalayas, using glacier melt model. M GP; Guruprasad C; Gopal D; Devaraj S Environ Monit Assess; 2022 Sep; 194(10):761. PubMed ID: 36087154 [TBL] [Abstract][Full Text] [Related]
7. Climate change impact on cryosphere and streamflow in the Upper Jhelum River Basin (UJRB) of north-western Himalayas. Dar T; Rai N; Kumar S; Bhat MA Environ Monit Assess; 2022 Feb; 194(3):140. PubMed ID: 35113272 [TBL] [Abstract][Full Text] [Related]
8. Complementary use of multi-model climate ensemble and Bayesian model averaging for projecting river hydrology in the Himalaya. Ahsan S; Bhat MS; Alam A; Farooq H; Shiekh HA Environ Sci Pollut Res Int; 2023 Mar; 30(13):38898-38920. PubMed ID: 36586027 [TBL] [Abstract][Full Text] [Related]
9. Climatic and hydrological projections to changing climate under CORDEX-South Asia experiments over the Karakoram-Hindukush-Himalayan water towers. Azmat M; Wahab A; Huggel C; Qamar MU; Hussain E; Ahmad S; Waheed A Sci Total Environ; 2020 Feb; 703():135010. PubMed ID: 31757548 [TBL] [Abstract][Full Text] [Related]
10. Status of glaciers and climate change of East Karakoram in early twenty-first century. Negi HS; Kumar A; Kanda N; Thakur NK; Singh KK Sci Total Environ; 2021 Jan; 753():141914. PubMed ID: 32906043 [TBL] [Abstract][Full Text] [Related]
11. The impact of climate change and glacier mass loss on the hydrology in the Mont-Blanc massif. Laurent L; Buoncristiani JF; Pohl B; Zekollari H; Farinotti D; Huss M; Mugnier JL; Pergaud J Sci Rep; 2020 Jun; 10(1):10420. PubMed ID: 32591640 [TBL] [Abstract][Full Text] [Related]
12. Envisaging the actual evapotranspiration and elucidating its effects under climate change scenarios on agrarian lands of bilate river basin in Ethiopia. Nannawo AS; Lohani TK; Eshete AA Heliyon; 2022 Aug; 8(8):e10368. PubMed ID: 36060990 [TBL] [Abstract][Full Text] [Related]
13. Assessment of climate change impacts on water balance and hydrological extremes in Bang Pakong-Prachin Buri river basin, Thailand. Okwala T; Shrestha S; Ghimire S; Mohanasundaram S; Datta A Environ Res; 2020 Jul; 186():109544. PubMed ID: 32361258 [TBL] [Abstract][Full Text] [Related]
14. Long-term annual and seasonal mass balance reconstruction and sensitivity analysis of Chhota Shigri Glacier in Western Himalaya. Sahu R; Gupta RD; Ramanathan A; Kumar P; Eidhammer T Environ Sci Pollut Res Int; 2024 Jan; 31(3):4910-4924. PubMed ID: 38110678 [TBL] [Abstract][Full Text] [Related]
15. Future hydrological regimes and glacier cover in the Everest region: The case study of the upper Dudh Koshi basin. Soncini A; Bocchiola D; Confortola G; Minora U; Vuillermoz E; Salerno F; Viviano G; Shrestha D; Senese A; Smiraglia C; Diolaiuti G Sci Total Environ; 2016 Sep; 565():1084-1101. PubMed ID: 27262982 [TBL] [Abstract][Full Text] [Related]
16. [Simulation study on the effects of climate change on aboveground biomass of plantation in southern China: Taking Moshao forest farm in Huitong Ecological Station as an example]. Dai EF; Zhou H; Wu Z; Wang XF; Xi WM; Zhu JJ Ying Yong Sheng Tai Xue Bao; 2016 Oct; 27(10):3059-3069. PubMed ID: 29726129 [TBL] [Abstract][Full Text] [Related]
17. Assessment of Red Sea temperatures in CMIP5 models for present and future climate. Agulles M; Jordà G; Hoteit I; Agustí S; Duarte CM PLoS One; 2021; 16(7):e0255505. PubMed ID: 34329351 [TBL] [Abstract][Full Text] [Related]
18. Assessing the use of a drought-tolerant variety as adaptation strategy for maize production under climate change in the savannas of Nigeria. Tofa AI; Kamara AY; Babaji BA; Akinseye FM; Bebeley JF Sci Rep; 2021 Apr; 11(1):8983. PubMed ID: 33903650 [TBL] [Abstract][Full Text] [Related]
19. Future climate change will accelerate maize phenological development and increase yield in the Nemoral climate. Žydelis R; Weihermüller L; Herbst M Sci Total Environ; 2021 Aug; 784():147175. PubMed ID: 33895511 [TBL] [Abstract][Full Text] [Related]
20. Predicting hydrologic flows under climate change: The Tâmega Basin as an analog for the Mediterranean region. Fonseca AR; Santos JA Sci Total Environ; 2019 Jun; 668():1013-1024. PubMed ID: 31018443 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]