These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
265 related articles for article (PubMed ID: 34198409)
1. A new structure entropy of complex networks based on nonextensive statistical mechanics and similarity of nodes. Wang B; Tan F; Zhu J; Wei D Math Biosci Eng; 2021 Apr; 18(4):3718-3732. PubMed ID: 34198409 [TBL] [Abstract][Full Text] [Related]
2. A new structural entropy measurement of networks based on the nonextensive statistical mechanics and hub repulsion. Tan F; Wang B; Wei D Math Biosci Eng; 2021 Oct; 18(6):9253-9263. PubMed ID: 34814344 [TBL] [Abstract][Full Text] [Related]
3. A Novel Entropy-Based Centrality Approach for Identifying Vital Nodes in Weighted Networks. Qiao T; Shan W; Yu G; Liu C Entropy (Basel); 2018 Apr; 20(4):. PubMed ID: 33265352 [TBL] [Abstract][Full Text] [Related]
4. Eigenvalue-based entropy in directed complex networks. Sun Y; Zhao H; Liang J; Ma X PLoS One; 2021; 16(6):e0251993. PubMed ID: 34153043 [TBL] [Abstract][Full Text] [Related]
5. Identifying Important Nodes in Complex Networks Based on Node Propagation Entropy. Yu Y; Zhou B; Chen L; Gao T; Liu J Entropy (Basel); 2022 Feb; 24(2):. PubMed ID: 35205569 [TBL] [Abstract][Full Text] [Related]
6. A Novel Method to Rank Influential Nodes in Complex Networks Based on Tsallis Entropy. Chen X; Zhou J; Liao Z; Liu S; Zhang Y Entropy (Basel); 2020 Jul; 22(8):. PubMed ID: 33286619 [TBL] [Abstract][Full Text] [Related]
7. A mechanics model based on information entropy for identifying influencers in complex networks. Li S; Xiao F Appl Intell (Dordr); 2023 Jan; ():1-20. PubMed ID: 36741743 [TBL] [Abstract][Full Text] [Related]
8. Identifying Influential Nodes in Complex Networks Based on Multiple Local Attributes and Information Entropy. Zhang J; Zhang Q; Wu L; Zhang J Entropy (Basel); 2022 Feb; 24(2):. PubMed ID: 35205587 [TBL] [Abstract][Full Text] [Related]
9. Nonextensive Statistical Mechanics: Equivalence Between Dual Entropy and Dual Probabilities. Livadiotis G Entropy (Basel); 2020 May; 22(6):. PubMed ID: 33286366 [TBL] [Abstract][Full Text] [Related]
10. New Markov-Shannon Entropy models to assess connectivity quality in complex networks: from molecular to cellular pathway, Parasite-Host, Neural, Industry, and Legal-Social networks. Riera-Fernández P; Munteanu CR; Escobar M; Prado-Prado F; Martín-Romalde R; Pereira D; Villalba K; Duardo-Sánchez A; González-Díaz H J Theor Biol; 2012 Jan; 293():174-88. PubMed ID: 22037044 [TBL] [Abstract][Full Text] [Related]
11. Computing Influential Nodes Using the Nearest Neighborhood Trust Value and PageRank in Complex Networks. Hajarathaiah K; Enduri MK; Anamalamudi S; Subba Reddy T; Tokala S Entropy (Basel); 2022 May; 24(5):. PubMed ID: 35626590 [TBL] [Abstract][Full Text] [Related]
12. Density-Based Entropy Centrality for Community Detection in Complex Networks. Žalik KR; Žalik M Entropy (Basel); 2023 Aug; 25(8):. PubMed ID: 37628226 [TBL] [Abstract][Full Text] [Related]
13. Necessity of q-expectation value in nonextensive statistical mechanics. Abe S; Bagci GB Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Jan; 71(1 Pt 2):016139. PubMed ID: 15697690 [TBL] [Abstract][Full Text] [Related]
14. Stationary and dynamical properties of information entropies in nonextensive systems. Hasegawa H Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Mar; 77(3 Pt 1):031133. PubMed ID: 18517355 [TBL] [Abstract][Full Text] [Related]
15. Entropy-Based Node Importance Identification Method for Public Transportation Infrastructure Coupled Networks: A Case Study of Chengdu. Zeng Z; Sun Y; Zhang X Entropy (Basel); 2024 Feb; 26(2):. PubMed ID: 38392414 [TBL] [Abstract][Full Text] [Related]
16. Assessing the relevance of node features for network structure. Bianconi G; Pin P; Marsili M Proc Natl Acad Sci U S A; 2009 Jul; 106(28):11433-8. PubMed ID: 19571013 [TBL] [Abstract][Full Text] [Related]
17. Identifying Influential Nodes in Complex Networks Based on Information Entropy and Relationship Strength. Xi Y; Cui X Entropy (Basel); 2023 May; 25(5):. PubMed ID: 37238509 [TBL] [Abstract][Full Text] [Related]
18. Identifying vital nodes in complex networks by adjacency information entropy. Xu X; Zhu C; Wang Q; Zhu X; Zhou Y Sci Rep; 2020 Feb; 10(1):2691. PubMed ID: 32060330 [TBL] [Abstract][Full Text] [Related]
19. Optimal pinning controllability of complex networks: dependence on network structure. Jalili M; Askari Sichani O; Yu X Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jan; 91(1):012803. PubMed ID: 25679653 [TBL] [Abstract][Full Text] [Related]
20. Entropy of network ensembles. Bianconi G Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Mar; 79(3 Pt 2):036114. PubMed ID: 19392025 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]