These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 34198602)

  • 1. Protease Substrate-Independent Universal Assay for Monitoring Digestion of Native Unmodified Proteins.
    Vuorinen E; Valtonen S; Hassan N; Mahran R; Habib H; Malakoutikhah M; Kopra K; Härmä H
    Int J Mol Sci; 2021 Jun; 22(12):. PubMed ID: 34198602
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of a protease activity assay using heat-sensitive Tus-GFP fusion protein substrates.
    Askin SP; Morin I; Schaeffer PM
    Anal Biochem; 2011 Aug; 415(2):126-33. PubMed ID: 21570945
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Use of antibody-hapten complexes attached to optical sensor surfaces as a substrate for proteases: real-time biosensing of protease activity.
    Wildeboer D; Jiang P; Price RG; Yu S; Jeganathan F; Abuknesha RA
    Talanta; 2010 Apr; 81(1-2):68-75. PubMed ID: 20188889
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Use of high-throughput mass spectrometry to reduce false positives in protease uHTS screens.
    Adam GC; Meng J; Rizzo JM; Amoss A; Lusen JW; Patel A; Riley D; Hunt R; Zuck P; Johnson EN; Uebele VN; Hermes JD
    J Biomol Screen; 2015 Feb; 20(2):212-22. PubMed ID: 25336354
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A recombinant fusion protein-based, fluorescent protease assay for high throughput-compatible substrate screening.
    Bozóki B; Gazda L; Tóth F; Miczi M; Mótyán JA; Tőzsér J
    Anal Biochem; 2018 Jan; 540-541():52-63. PubMed ID: 29122614
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recent developments in protease activity assays and sensors.
    Ong ILH; Yang KL
    Analyst; 2017 May; 142(11):1867-1881. PubMed ID: 28487913
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Emerging challenges in the design of selective substrates, inhibitors and activity-based probes for indistinguishable proteases.
    Kasperkiewicz P; Poreba M; Groborz K; Drag M
    FEBS J; 2017 May; 284(10):1518-1539. PubMed ID: 28052575
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reverse Zymography: Overview and Pitfalls.
    Sharma K; Bhattacharyya D
    Methods Mol Biol; 2017; 1626():125-132. PubMed ID: 28608205
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Label-free high-throughput functional lytic assays.
    O'Malley SM; Xie X; Frutos AG
    J Biomol Screen; 2007 Feb; 12(1):117-25. PubMed ID: 17175523
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Elastinolytic and proteolytic enzymes.
    Kessler E; Safrin M
    Methods Mol Biol; 2014; 1149():135-69. PubMed ID: 24818903
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Detection of protease activity in cells and animals.
    Verdoes M; Verhelst SH
    Biochim Biophys Acta; 2016 Jan; 1864(1):130-42. PubMed ID: 25960278
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protease proteomics: revealing protease in vivo functions using systems biology approaches.
    Doucet A; Overall CM
    Mol Aspects Med; 2008 Oct; 29(5):339-58. PubMed ID: 18571712
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recent Advances in Activity-Based Protein Profiling of Proteases.
    Chakrabarty S; Kahler JP; van de Plassche MAT; Vanhoutte R; Verhelst SHL
    Curr Top Microbiol Immunol; 2019; 420():253-281. PubMed ID: 30244324
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mapping specificity, cleavage entropy, allosteric changes and substrates of blood proteases in a high-throughput screen.
    Uliana F; Vizovišek M; Acquasaliente L; Ciuffa R; Fossati A; Frommelt F; Goetze S; Wollscheid B; Gstaiger M; De Filippis V; Auf dem Keller U; Aebersold R
    Nat Commun; 2021 Mar; 12(1):1693. PubMed ID: 33727531
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In Situ Demonstration and Characteristic Analysis of the Protease Using Substrate Immersing Zymography.
    He H; Li H; Liu D
    Methods Mol Biol; 2017; 1626():205-212. PubMed ID: 28608213
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthetic and biological approaches to map substrate specificities of proteases.
    Chen S; Yim JJ; Bogyo M
    Biol Chem; 2019 Dec; 401(1):165-182. PubMed ID: 31639098
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Screening for protease substrate by polyvalent phage display.
    Sedlacek R; Chen E
    Comb Chem High Throughput Screen; 2005 Mar; 8(2):197-203. PubMed ID: 15777183
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microsphere-based protease assays and screening application for lethal factor and factor Xa.
    Saunders MJ; Kim H; Woods TA; Nolan JP; Sklar LA; Edwards BS; Graves SW
    Cytometry A; 2006 May; 69(5):342-52. PubMed ID: 16604538
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evolutionary optimization of peptide substrates for proteases that exhibit rapid hydrolysis kinetics.
    Boulware KT; Jabaiah A; Daugherty PS
    Biotechnol Bioeng; 2010 Jun; 106(3):339-46. PubMed ID: 20148412
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Versatile substrates and probes for IgA1 protease activity.
    Choudary SK; Qiu J; Plaut AG; Kritzer JA
    Chembiochem; 2013 Oct; 14(15):2007-12. PubMed ID: 24038810
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.