These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
188 related articles for article (PubMed ID: 34198656)
1. Design of a Waterborne Polyurethane-Urea Ink for Direct Ink Writing 3D Printing. Vadillo J; Larraza I; Calvo-Correas T; Gabilondo N; Derail C; Eceiza A Materials (Basel); 2021 Jun; 14(12):. PubMed ID: 34198656 [TBL] [Abstract][Full Text] [Related]
2. Enhancing the Mechanical Properties of 3D-Printed Waterborne Polyurethane-Urea and Cellulose Nanocrystal Scaffolds through Crosslinking. Vadillo J; Larraza I; Calvo-Correas T; Martin L; Derail C; Eceiza A Polymers (Basel); 2022 Nov; 14(22):. PubMed ID: 36433126 [TBL] [Abstract][Full Text] [Related]
3. Effect of Cellulose Nanofibers' Structure and Incorporation Route in Waterborne Polyurethane-Urea Based Nanocomposite Inks. Larraza I; Vadillo J; Calvo-Correas T; Tejado A; Martin L; Arbelaiz A; Eceiza A Polymers (Basel); 2022 Oct; 14(21):. PubMed ID: 36365510 [TBL] [Abstract][Full Text] [Related]
4. Rheological Analysis of Bio-ink for 3D Bio-printing Processes. Habib MA; Khoda B J Manuf Process; 2022 Apr; 76():708-718. PubMed ID: 35296051 [TBL] [Abstract][Full Text] [Related]
5. The Effects of Solid Particle Containing Inks on the Printing Quality of Porous Pharmaceutical Structures Fabricated by 3D Semi-Solid Extrusion Printing. Teoh XY; Zhang B; Belton P; Chan SY; Qi S Pharm Res; 2022 Jun; 39(6):1267-1279. PubMed ID: 35661083 [TBL] [Abstract][Full Text] [Related]
6. Eucalyptus bleached kraft pulp-ionic liquid inks for 3D printing of ionogels and hydrogels. Hopson C; Rigual V; Alonso MV; Oliet M; Rodriguez F Carbohydr Polym; 2023 Aug; 313():120897. PubMed ID: 37182980 [TBL] [Abstract][Full Text] [Related]
7. High-Fidelity Extrusion Bioprinting of Low-Printability Polymers Using Carbopol as a Rheology Modifier. Barreiro Carpio M; Gonzalez Martinez E; Dabaghi M; Ungureanu J; Arizpe Tafoya AV; Gonzalez Martinez DA; Hirota JA; Moran-Mirabal JM ACS Appl Mater Interfaces; 2023 Nov; 15(47):54234-54248. PubMed ID: 37964517 [TBL] [Abstract][Full Text] [Related]
8. Development of novel 3D printable inks for protein delivery. Alzhrani RF; Xu H; Zhang Y; Maniruzzaman M; Cui Z Int J Pharm; 2024 Jun; 659():124277. PubMed ID: 38802027 [TBL] [Abstract][Full Text] [Related]
10. An investigation into the effects of ink formulations of semi-solid extrusion 3D printing on the performance of printed solid dosage forms. Zhang B; Belton P; Teoh XY; Gleadall A; Bibb R; Qi S J Mater Chem B; 2023 Dec; 12(1):131-144. PubMed ID: 38050731 [TBL] [Abstract][Full Text] [Related]
11. Effect of Hydrocolloids on Rheological Properties and Printability of Vegetable Inks for 3D Food Printing. Kim HW; Lee JH; Park SM; Lee MH; Lee IW; Doh HS; Park HJ J Food Sci; 2018 Dec; 83(12):2923-2932. PubMed ID: 30506688 [TBL] [Abstract][Full Text] [Related]
12. Composite Inks for Extrusion Printing of Biological and Biomedical Constructs. Ravanbakhsh H; Bao G; Luo Z; Mongeau LG; Zhang YS ACS Biomater Sci Eng; 2021 Sep; 7(9):4009-4026. PubMed ID: 34510905 [TBL] [Abstract][Full Text] [Related]
13. Proposal to assess printability of bioinks for extrusion-based bioprinting and evaluation of rheological properties governing bioprintability. Paxton N; Smolan W; Böck T; Melchels F; Groll J; Jungst T Biofabrication; 2017 Nov; 9(4):044107. PubMed ID: 28930091 [TBL] [Abstract][Full Text] [Related]
14. Insight into the correlations among rheological behaviour, protein molecular structure and 3D printability during the processing of surimi from golden pompano (Trachinotus ovatus). Liu Y; Sun Q; Wei S; Xia Q; Pan Y; Ji H; Deng C; Hao J; Liu S Food Chem; 2022 Mar; 371():131046. PubMed ID: 34537614 [TBL] [Abstract][Full Text] [Related]
16. Direct Ink Writing of Fully Bio-Based Liquid Crystalline Lignin/Hydroxypropyl Cellulose Aqueous Inks: Optimization of Formulations and Printing Parameters. Ebers LS; Laborie MP ACS Appl Bio Mater; 2020 Oct; 3(10):6897-6907. PubMed ID: 35019351 [TBL] [Abstract][Full Text] [Related]
17. Shape fidelity, mechanical and biological performance of 3D printed polycaprolactone-bioactive glass composite scaffolds. Baier RV; Contreras Raggio JI; Giovanetti CM; Palza H; Burda I; Terrasi G; Weisse B; De Freitas GS; Nyström G; Vivanco JF; Aiyangar AK Biomater Adv; 2022 Mar; 134():112540. PubMed ID: 35525740 [TBL] [Abstract][Full Text] [Related]
18. Effect of Oil Content on the Printability of Coconut Cream. Lee CP; Hoo JY; Hashimoto M Int J Bioprint; 2021; 7(2):354. PubMed ID: 33997437 [TBL] [Abstract][Full Text] [Related]
19. Current Status in the Utilization of Biobased Polymers for 3D Printing Process: A Systematic Review of the Materials, Processes, and Challenges. Shahbazi M; Jäger H ACS Appl Bio Mater; 2021 Jan; 4(1):325-369. PubMed ID: 35014287 [TBL] [Abstract][Full Text] [Related]