These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 34198745)

  • 1. Discovering Cellular Mitochondrial Heteroplasmy Heterogeneity with Single Cell RNA and ATAC Sequencing.
    Marshall AS; Jones NS
    Biology (Basel); 2021 Jun; 10(6):. PubMed ID: 34198745
    [TBL] [Abstract][Full Text] [Related]  

  • 2. SCALA: A complete solution for multimodal analysis of single-cell Next Generation Sequencing data.
    Tzaferis C; Karatzas E; Baltoumas FA; Pavlopoulos GA; Kollias G; Konstantopoulos D
    Comput Struct Biotechnol J; 2023; 21():5382-5393. PubMed ID: 38022693
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Single-cell and single-nuclei RNA sequencing as powerful tools to decipher cellular heterogeneity and dysregulation in neurodegenerative diseases.
    Cuevas-Diaz Duran R; González-Orozco JC; Velasco I; Wu JQ
    Front Cell Dev Biol; 2022; 10():884748. PubMed ID: 36353512
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genome-wide epigenomic profiling for biomarker discovery.
    Dirks RA; Stunnenberg HG; Marks H
    Clin Epigenetics; 2016; 8():122. PubMed ID: 27895806
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mitochondrial DNA heteroplasmy in the emerging field of massively parallel sequencing.
    Just RS; Irwin JA; Parson W
    Forensic Sci Int Genet; 2015 Sep; 18():131-9. PubMed ID: 26009256
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reducing mitochondrial reads in ATAC-seq using CRISPR/Cas9.
    Montefiori L; Hernandez L; Zhang Z; Gilad Y; Ober C; Crawford G; Nobrega M; Jo Sakabe N
    Sci Rep; 2017 May; 7(1):2451. PubMed ID: 28550296
    [TBL] [Abstract][Full Text] [Related]  

  • 7. MitoTrace: A Computational Framework for Analyzing Mitochondrial Variation in Single-Cell RNA Sequencing Data.
    Wang M; Deng W; Samuels DC; Zhao Z; Simon LM
    Genes (Basel); 2023 Jun; 14(6):. PubMed ID: 37372402
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Validation of Next-Generation Sequencing of Entire Mitochondrial Genomes and the Diversity of Mitochondrial DNA Mutations in Oral Squamous Cell Carcinoma.
    Kloss-Brandstätter A; Weissensteiner H; Erhart G; Schäfer G; Forer L; Schönherr S; Pacher D; Seifarth C; Stöckl A; Fendt L; Sottsas I; Klocker H; Huck CW; Rasse M; Kronenberg F; Kloss FR
    PLoS One; 2015; 10(8):e0135643. PubMed ID: 26262956
    [TBL] [Abstract][Full Text] [Related]  

  • 9. PHFinder: assisted detection of point heteroplasmy in Sanger sequencing chromatograms.
    Suárez Menéndez M; Rivera-León VE; Robbins J; Berube M; Palsbøll PJ
    PeerJ; 2023; 11():e16028. PubMed ID: 37744223
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impact of the sequencing method on the detection and interpretation of mitochondrial DNA length heteroplasmy.
    Sturk-Andreaggi K; Parson W; Allen M; Marshall C
    Forensic Sci Int Genet; 2020 Jan; 44():102205. PubMed ID: 31783338
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Systematic Overview of Single-Cell Transcriptomics Databases, their Use cases, and Limitations.
    Gondal MN; Shah SUR; Chinnaiyan AM; Cieslik M
    ArXiv; 2024 Apr; ():. PubMed ID: 38699169
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultra-deep next generation mitochondrial genome sequencing reveals widespread heteroplasmy in Chinese hamster ovary cells.
    Kelly PS; Clarke C; Costello A; Monger C; Meiller J; Dhiman H; Borth N; Betenbaugh MJ; Clynes M; Barron N
    Metab Eng; 2017 May; 41():11-22. PubMed ID: 28188893
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Single-Cell RNA Sequencing and Its Combination with Protein and DNA Analyses.
    Choi JR; Yong KW; Choi JY; Cowie AC
    Cells; 2020 May; 9(5):. PubMed ID: 32375335
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Applications of Single-Cell RNA Sequencing in Cardiovascular Research.
    Fan Y; Zhou H; Liu X; Li J; Xu K; Fu X; Ye L; Li G
    Front Cell Dev Biol; 2021; 9():810232. PubMed ID: 35174168
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhancement of Plant Productivity in the Post-Genomics Era.
    Thao NP; Tran LS
    Curr Genomics; 2016 Aug; 17(4):295-6. PubMed ID: 27499678
    [TBL] [Abstract][Full Text] [Related]  

  • 16. mit-o-matic: a comprehensive computational pipeline for clinical evaluation of mitochondrial variations from next-generation sequencing datasets.
    Vellarikkal SK; Dhiman H; Joshi K; Hasija Y; Sivasubbu S; Scaria V
    Hum Mutat; 2015 Apr; 36(4):419-24. PubMed ID: 25677119
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High throughput single cell analysis of mitochondrial heteroplasmy in mitochondrial diseases.
    Maeda R; Kami D; Maeda H; Shikuma A; Gojo S
    Sci Rep; 2020 Jul; 10(1):10821. PubMed ID: 32616755
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Detection of high variability in gene expression from single-cell RNA-seq profiling.
    Chen HI; Jin Y; Huang Y; Chen Y
    BMC Genomics; 2016 Aug; 17 Suppl 7(Suppl 7):508. PubMed ID: 27556924
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Heteroplasmy in the complete chicken mitochondrial genome.
    Huang Y; Lu W; Ji J; Zhang X; Zhang P; Chen W
    PLoS One; 2019; 14(11):e0224677. PubMed ID: 31703075
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In-vivo differentiation of adult hematopoietic stem cells from a single-cell point of view.
    Nazaraliyev A; Richard E; Sawai CM
    Curr Opin Hematol; 2020 Jul; 27(4):241-247. PubMed ID: 32398457
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.