BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 34198844)

  • 1. In-Field Automatic Detection of Grape Bunches under a Totally Uncontrolled Environment.
    Ghiani L; Sassu A; Palumbo F; Mercenaro L; Gambella F
    Sensors (Basel); 2021 Jun; 21(11):. PubMed ID: 34198844
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deep Count: Fruit Counting Based on Deep Simulated Learning.
    Rahnemoonfar M; Sheppard C
    Sensors (Basel); 2017 Apr; 17(4):. PubMed ID: 28425947
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In-Field Automatic Identification of Pomegranates Using a Farmer Robot.
    Devanna RP; Milella A; Marani R; Garofalo SP; Vivaldi GA; Pascuzzi S; Galati R; Reina G
    Sensors (Basel); 2022 Aug; 22(15):. PubMed ID: 35957377
    [TBL] [Abstract][Full Text] [Related]  

  • 4. wGrapeUNIPD-DL: An open dataset for white grape bunch detection.
    Sozzi M; Cantalamessa S; Cogato A; Kayad A; Marinello F
    Data Brief; 2022 Aug; 43():108466. PubMed ID: 35873279
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High spatial resolution dataset of grapevine yield components at the within-field level.
    Oger B; Zhang Y; Gras JP; Valloo Y; Faure P; Brunel G; Tisseyre B
    Data Brief; 2023 Oct; 50():109580. PubMed ID: 37780465
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Towards Automated Large-Scale 3D Phenotyping of Vineyards under Field Conditions.
    Rose JC; Kicherer A; Wieland M; Klingbeil L; Töpfer R; Kuhlmann H
    Sensors (Basel); 2016 Dec; 16(12):. PubMed ID: 27983669
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Deep Learning Approach for Precision Viticulture, Assessing Grape Maturity via YOLOv7.
    Badeka E; Karapatzak E; Karampatea A; Bouloumpasi E; Kalathas I; Lytridis C; Tziolas E; Tsakalidou VN; Kaburlasos VG
    Sensors (Basel); 2023 Sep; 23(19):. PubMed ID: 37836956
    [TBL] [Abstract][Full Text] [Related]  

  • 8. GrapeMOTS: UAV vineyard dataset with MOTS grape bunch annotations recorded from multiple perspectives for enhanced object detection and tracking.
    Ariza-Sentís M; Wang K; Cao Z; Vélez S; Valente J
    Data Brief; 2024 Jun; 54():110432. PubMed ID: 38698798
    [TBL] [Abstract][Full Text] [Related]  

  • 9. DeepFruits: A Fruit Detection System Using Deep Neural Networks.
    Sa I; Ge Z; Dayoub F; Upcroft B; Perez T; McCool C
    Sensors (Basel); 2016 Aug; 16(8):. PubMed ID: 27527168
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Using transfer learning-based plant disease classification and detection for sustainable agriculture.
    Shafik W; Tufail A; De Silva Liyanage C; Apong RAAHM
    BMC Plant Biol; 2024 Feb; 24(1):136. PubMed ID: 38408925
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Survey of Deep Convolutional Neural Networks Applied for Prediction of Plant Leaf Diseases.
    Dhaka VS; Meena SV; Rani G; Sinwar D; Kavita ; Ijaz MF; Woźniak M
    Sensors (Basel); 2021 Jul; 21(14):. PubMed ID: 34300489
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A deep multi-task learning approach to identifying mummy berry infection sites, the disease stage, and severity.
    Qu H; Zheng C; Ji H; Huang R; Wei D; Annis S; Drummond F
    Front Plant Sci; 2024; 15():1340884. PubMed ID: 38606063
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of the phenolic composition and yield of 'BRS Vitoria' seedless table grape under different bunch densities using HPLC-DAD-ESI-MS/MS.
    Colombo RC; Roberto SR; Nixdorf SL; Pérez-Navarro J; Gómez-Alonso S; Mena-Morales A; García-Romero E; Azeredo Gonçalves LS; da Cruz MA; de Carvalho DU; Madeira TB; Watanabe LS; de Souza RT; Hermosín-Gutiérrez I
    Food Res Int; 2020 Apr; 130():108955. PubMed ID: 32156395
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intact Detection of Highly Occluded Immature Tomatoes on Plants Using Deep Learning Techniques.
    Mu Y; Chen TS; Ninomiya S; Guo W
    Sensors (Basel); 2020 May; 20(10):. PubMed ID: 32466108
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Occluded Grape Cluster Detection and Vine Canopy Visualisation Using an Ultrasonic Phased Array.
    Parr B; Legg M; Bradley S; Alam F
    Sensors (Basel); 2021 Mar; 21(6):. PubMed ID: 33804742
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deep Learning Based Automatic Grape Downy Mildew Detection.
    Zhang Z; Qiao Y; Guo Y; He D
    Front Plant Sci; 2022; 13():872107. PubMed ID: 35755646
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of rain-shelter cultivation of Vitis vinifera cv. Cabernet Gernischet on the phenolic profile of berry skins and the incidence of grape diseases.
    Meng JF; Ning PF; Xu TF; Zhang ZW
    Molecules; 2012 Dec; 18(1):381-97. PubMed ID: 23271472
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Deep-Learning-Based Real-Time Detector for Grape Leaf Diseases Using Improved Convolutional Neural Networks.
    Xie X; Ma Y; Liu B; He J; Li S; Wang H
    Front Plant Sci; 2020; 11():751. PubMed ID: 32582266
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deep learning-based monocular placental pose estimation: towards collaborative robotics in fetoscopy.
    Ahmad MA; Ourak M; Gruijthuijsen C; Deprest J; Vercauteren T; Vander Poorten E
    Int J Comput Assist Radiol Surg; 2020 Sep; 15(9):1561-1571. PubMed ID: 32350788
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Yield Estimation and Visualization Solution for Precision Agriculture.
    Osman Y; Dennis R; Elgazzar K
    Sensors (Basel); 2021 Oct; 21(19):. PubMed ID: 34640977
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.