BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 34198975)

  • 1. A Transcriptomic Approach to the Metabolism of Tetrapyrrolic Photosensitizers in a Marine Annelid.
    Santos ML; D'Ambrosio M; Rodrigo AP; Parola AJ; Costa PM
    Molecules; 2021 Jun; 26(13):. PubMed ID: 34198975
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Light-Mediated Toxicity of Porphyrin-Like Pigments from a Marine Polychaeta.
    D'Ambrosio M; Santos AC; Alejo-Armijo A; Parola AJ; Costa PM
    Mar Drugs; 2020 Jun; 18(6):. PubMed ID: 32517206
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The complexity of porphyrin-like pigments in a marine annelid sheds new light on haem metabolism in aquatic invertebrates.
    Martins C; Rodrigo AP; Cabrita L; Henriques P; Parola AJ; Costa PM
    Sci Rep; 2019 Sep; 9(1):12930. PubMed ID: 31506557
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Transcriptomic Approach to the Recruitment of Venom Proteins in a Marine Annelid.
    Rodrigo AP; Grosso AR; Baptista PV; Fernandes AR; Costa PM
    Toxins (Basel); 2021 Jan; 13(2):. PubMed ID: 33525375
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A morphoanatomical approach to the adaptive features of the epidermis and proboscis of a marine Polychaeta: Eulalia viridis (Phyllodocida: Phyllodocidae).
    Rodrigo AP; Martins C; Costa MH; Alves de Matos AP; Costa PM
    J Anat; 2018 Nov; 233(5):567-579. PubMed ID: 30073651
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-performance liquid chromatographic separation and quantitation of tetrapyrroles from biological materials.
    Bonkovsky HL; Wood SG; Howell SK; Sinclair PR; Lincoln B; Healey JF; Sinclair JF
    Anal Biochem; 1986 May; 155(1):56-64. PubMed ID: 3717559
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tetrapyrrolic Pigments from Heme- and Chlorophyll Breakdown are Actin-Targeting Compounds.
    Karg CA; Wang S; Al Danaf N; Pemberton RP; Bernard D; Kretschmer M; Schneider S; Zisis T; Vollmar AM; Lamb DC; Zahler S; Moser S
    Angew Chem Int Ed Engl; 2021 Oct; 60(41):22578-22584. PubMed ID: 34310831
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tryptophan-Rich Sensory Protein/Translocator Protein (TSPO) from Cyanobacterium Fremyella diplosiphon Binds a Broad Range of Functionally Relevant Tetrapyrroles.
    Busch AW; WareJoncas Z; Montgomery BL
    Biochemistry; 2017 Jan; 56(1):73-84. PubMed ID: 27990801
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Research advances in the use of tetrapyrrolic photosensitizers for photodynamic therapy.
    Nyman ES; Hynninen PH
    J Photochem Photobiol B; 2004 Jan; 73(1-2):1-28. PubMed ID: 14732247
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Glutathionyl-biliverdin IXα, a new heme catabolite in a marine annelid: Sex and cell specific accumulation.
    Schenk S; Hoeger U
    Biochimie; 2011 Feb; 93(2):207-16. PubMed ID: 20884317
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biosynthesis of the modified tetrapyrroles-the pigments of life.
    Bryant DA; Hunter CN; Warren MJ
    J Biol Chem; 2020 May; 295(20):6888-6925. PubMed ID: 32241908
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chemical Analysis of the Luminous Slime Secreted by the Marine Worm Chaetopterus (Annelida, Polychaeta).
    Branchini BR; Behney CE; Southworth TL; Rawat R; Deheyn DD
    Photochem Photobiol; 2014 Jan; 90(1):247-51. PubMed ID: 24004150
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Expanding the eggshell colour gamut: uroerythrin and bilirubin from tinamou (Tinamidae) eggshells.
    Hamchand R; Hanley D; Prum RO; Brückner C
    Sci Rep; 2020 Jul; 10(1):11264. PubMed ID: 32647200
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The cell biology of tetrapyrroles: a life and death struggle.
    Mochizuki N; Tanaka R; Grimm B; Masuda T; Moulin M; Smith AG; Tanaka A; Terry MJ
    Trends Plant Sci; 2010 Sep; 15(9):488-98. PubMed ID: 20598625
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Methods for analysis of photosynthetic pigments and steady-state levels of intermediates of tetrapyrrole biosynthesis.
    Czarnecki O; Peter E; Grimm B
    Methods Mol Biol; 2011; 775():357-85. PubMed ID: 21863454
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prioritization of natural extracts by LC-MS-PCA for the identification of new photosensitizers for photodynamic therapy.
    Samat N; Tan PJ; Shaari K; Abas F; Lee HB
    Anal Chem; 2014 Feb; 86(3):1324-31. PubMed ID: 24405504
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adhesive gland transcriptomics uncovers a diversity of genes involved in glue formation in marine tube-building polychaetes.
    Buffet JP; Corre E; Duvernois-Berthet E; Fournier J; Lopez PJ
    Acta Biomater; 2018 May; 72():316-328. PubMed ID: 29597026
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-performance liquid chromatographic analysis of bile pigments as their native tetrapyrroles and as their dipyrrolic azosulfanilate derivatives.
    Odell GB; Mogilevsky WS; Gourley GR
    J Chromatogr; 1990 Aug; 529(2):287-98. PubMed ID: 2229248
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tetrapyrrole-photosensitizers vectorization and plasma LDL: a physico-chemical approach.
    Bonneau S; Vever-Bizet C; Mojzisova H; Brault D
    Int J Pharm; 2007 Nov; 344(1-2):78-87. PubMed ID: 17656052
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reverse-phase h.p.l.c. separation, quantification and preparation of bilirubin and its conjugates from native bile. Quantitative analysis of the intact tetrapyrroles based on h.p.l.c. of their ethyl anthranilate azo derivatives.
    Spivak W; Carey MC
    Biochem J; 1985 Feb; 225(3):787-805. PubMed ID: 3919713
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.