These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

488 related articles for article (PubMed ID: 34199020)

  • 21. Histone methylation and the DNA damage response.
    Gong F; Miller KM
    Mutat Res Rev Mutat Res; 2019; 780():37-47. PubMed ID: 31395347
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Epigenetic Regulation in Oral Squamous Cell Carcinoma Microenvironment: A Comprehensive Review.
    Mesgari H; Esmaelian S; Nasiri K; Ghasemzadeh S; Doroudgar P; Payandeh Z
    Cancers (Basel); 2023 Nov; 15(23):. PubMed ID: 38067304
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Contrasting roles of H3K4me3 and H3K9me3 in regulation of apoptosis and gemcitabine resistance in human pancreatic cancer cells.
    Lu C; Yang D; Sabbatini ME; Colby AH; Grinstaff MW; Oberlies NH; Pearce C; Liu K
    BMC Cancer; 2018 Feb; 18(1):149. PubMed ID: 29409480
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Targeting epigenetic regulation for cancer therapy using small molecule inhibitors.
    Kumar A; Emdad L; Fisher PB; Das SK
    Adv Cancer Res; 2023; 158():73-161. PubMed ID: 36990539
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Statins Do Not Directly Inhibit the Activity of Major Epigenetic Modifying Enzymes.
    Bridgeman S; Northrop W; Ellison G; Sabapathy T; Melton PE; Newsholme P; Mamotte CDS
    Cancers (Basel); 2019 Apr; 11(4):. PubMed ID: 30974899
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Gene expression profiling of epigenetic chromatin modification enzymes and histone marks by cigarette smoke: implications for COPD and lung cancer.
    Sundar IK; Rahman I
    Am J Physiol Lung Cell Mol Physiol; 2016 Dec; 311(6):L1245-L1258. PubMed ID: 27793800
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Advances in Epigenetic Cancer Therapeutics.
    Hillyar C; Rallis KS; Varghese J
    Cureus; 2020 Nov; 12(11):e11725. PubMed ID: 33391954
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Epigenome editing: targeted manipulation of epigenetic modifications in plants.
    Shin H; Choi WL; Lim JY; Huh JH
    Genes Genomics; 2022 Mar; 44(3):307-315. PubMed ID: 35000141
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Design, synthesis and anticancer potential of NSC-319745 hydroxamic acid derivatives as DNMT and HDAC inhibitors.
    Yuan Z; Sun Q; Li D; Miao S; Chen S; Song L; Gao C; Chen Y; Tan C; Jiang Y
    Eur J Med Chem; 2017 Jul; 134():281-292. PubMed ID: 28419930
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Current and upcoming approaches to exploit the reversibility of epigenetic mutations in breast cancer.
    Falahi F; van Kruchten M; Martinet N; Hospers GA; Rots MG
    Breast Cancer Res; 2014 Jul; 16(4):412. PubMed ID: 25410383
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Histone deacetylase inhibitors: apoptotic effects and clinical implications (Review).
    Emanuele S; Lauricella M; Tesoriere G
    Int J Oncol; 2008 Oct; 33(4):637-46. PubMed ID: 18813776
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Paederia foetida induces anticancer activity by modulating chromatin modification enzymes and altering pro-inflammatory cytokine gene expression in human prostate cancer cells.
    Pradhan N; Parbin S; Kausar C; Kar S; Mawatwal S; Das L; Deb M; Sengupta D; Dhiman R; Patra SK
    Food Chem Toxicol; 2019 Aug; 130():161-173. PubMed ID: 31112703
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cancer epigenetics: new therapies and new challenges.
    Hatzimichael E; Crook T
    J Drug Deliv; 2013; 2013():529312. PubMed ID: 23533770
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Epigenetics in prostate cancer: biologic and clinical relevance.
    Jerónimo C; Bastian PJ; Bjartell A; Carbone GM; Catto JW; Clark SJ; Henrique R; Nelson WG; Shariat SF
    Eur Urol; 2011 Oct; 60(4):753-66. PubMed ID: 21719191
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Photo-Cross-Linking To Delineate Epigenetic Interactome.
    Zhang Z; Lin J; Liu Z; Tian G; Li XM; Jing Y; Li X; Li XD
    J Am Chem Soc; 2022 Nov; 144(46):20979-20997. PubMed ID: 36346429
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Targeting the Epigenome as a Novel Therapeutic Approach for Breast Cancer.
    Oh S; Ko JY; Oh C; Yoo KH
    Adv Exp Med Biol; 2017; 1026():287-313. PubMed ID: 29282690
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Understanding the Mechanisms by Which Epigenetic Modifiers Avert Therapy Resistance in Cancer.
    Quagliano A; Gopalakrishnapillai A; Barwe SP
    Front Oncol; 2020; 10():992. PubMed ID: 32670880
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Prospective Epigenetic Actions of Organo-Sulfur Compounds against Cancer: Perspectives and Molecular Mechanisms.
    Shoaib S; Ansari MA; Ghazwani M; Hani U; Jamous YF; Alali Z; Wahab S; Ahmad W; Weir SA; Alomary MN; Yusuf N; Islam N
    Cancers (Basel); 2023 Jan; 15(3):. PubMed ID: 36765652
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The promise and failures of epigenetic therapies for cancer treatment.
    Bojang P; Ramos KS
    Cancer Treat Rev; 2014 Feb; 40(1):153-69. PubMed ID: 23831234
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Probing Chromatin-modifying Enzymes with Chemical Tools.
    Fischle W; Schwarzer D
    ACS Chem Biol; 2016 Mar; 11(3):689-705. PubMed ID: 26845102
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 25.