These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 34199145)

  • 21. Fundamentals and applications of inertial microfluidics: a review.
    Zhang J; Yan S; Yuan D; Alici G; Nguyen NT; Ebrahimi Warkiani M; Li W
    Lab Chip; 2016 Jan; 16(1):10-34. PubMed ID: 26584257
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Vortex-Enhanced Microfluidic Chip for Efficient Mixing and Particle Capturing Combining Acoustics with Inertia.
    Lu Y; Tan W; Mu S; Zhu G
    Anal Chem; 2024 Mar; 96(9):3859-3869. PubMed ID: 38318710
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Fundamentals of elasto-inertial particle focusing in curved microfluidic channels.
    Xiang N; Zhang X; Dai Q; Cheng J; Chen K; Ni Z
    Lab Chip; 2016 Jul; 16(14):2626-35. PubMed ID: 27300118
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Asymmetrical Obstacles Enable Unilateral Inertial Focusing and Separation in Sinusoidal Microchannel.
    Cha H; Dai Y; Hansen HHWB; Ouyang L; Chen X; Kang X; An H; Ta HT; Nguyen NT; Zhang J
    Cyborg Bionic Syst; 2023; 4():0036. PubMed ID: 37342212
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Dean-flow-coupled elasto-inertial three-dimensional particle focusing under viscoelastic flow in a straight channel with asymmetrical expansion-contraction cavity arrays.
    Yuan D; Zhang J; Yan S; Pan C; Alici G; Nguyen NT; Li WH
    Biomicrofluidics; 2015 Jul; 9(4):044108. PubMed ID: 26339309
    [TBL] [Abstract][Full Text] [Related]  

  • 26. New insights into the physics of inertial microfluidics in curved microchannels. I. Relaxing the fixed inflection point assumption.
    Rafeie M; Hosseinzadeh S; Taylor RA; Warkiani ME
    Biomicrofluidics; 2019 May; 13(3):034117. PubMed ID: 31431813
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Semi-Empirical Estimation of Dean Flow Velocity in Curved Microchannels.
    Bayat P; Rezai P
    Sci Rep; 2017 Oct; 7(1):13655. PubMed ID: 29057886
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Dean migration of unfocused micron sized particles in low aspect ratio spiral microchannels.
    Duraiswamy S; Yung LYL
    Biomed Microdevices; 2021 Jul; 23(3):40. PubMed ID: 34309731
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Assessment of Lagrangian Modeling of Particle Motion in a Spiral Microchannel for Inertial Microfluidics.
    Rasooli R; Çetin B
    Micromachines (Basel); 2018 Aug; 9(9):. PubMed ID: 30424366
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Tri-fluid mixing in a microchannel for nanoparticle synthesis.
    Feng X; Ren Y; Hou L; Tao Y; Jiang T; Li W; Jiang H
    Lab Chip; 2019 Sep; 19(17):2936-2946. PubMed ID: 31380864
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Stabilizing and Accelerating Secondary Flow in Ultralong Spiral Channel for High-Throughput Cell Manipulation.
    Shen S; Liu X; Fan K; Bai H; Li X; Li H
    Anal Chem; 2024 Jul; 96(28):11412-11421. PubMed ID: 38954777
    [TBL] [Abstract][Full Text] [Related]  

  • 32. High-throughput inertial particle focusing in a curved microchannel: Insights into the flow-rate regulation mechanism and process model.
    Xiang N; Yi H; Chen K; Sun D; Jiang D; Dai Q; Ni Z
    Biomicrofluidics; 2013; 7(4):44116. PubMed ID: 24404049
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Lattice Boltzmann numerical simulation and experimental research of dynamic flow in an expansion-contraction microchannel.
    Jiang D; Sun D; Xiang N; Chen K; Yi H; Ni Z
    Biomicrofluidics; 2013; 7(3):34113. PubMed ID: 24404033
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Double-Mode Microparticle Manipulation by Tunable Secondary Flow in Microchannel With Arc-Shaped Groove Arrays.
    Zhao Q; Yan S; Yuan D; Zhang J; Du H; Alici G; Li W
    IEEE Trans Biomed Circuits Syst; 2017 Dec; 11(6):1406-1412. PubMed ID: 28809710
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Vortex chip incorporating an orthogonal turn for size-based isolation of circulating cells.
    Rastogi N; Seth P; Bhat R; Sen P
    Anal Chim Acta; 2021 May; 1159():338423. PubMed ID: 33867033
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A passive microfluidic device for continuous microparticle enrichment.
    Fan LL; Zhu XL; Yan Q; Zhe J; Zhao L
    Electrophoresis; 2019 Mar; 40(6):1000-1009. PubMed ID: 30488639
    [TBL] [Abstract][Full Text] [Related]  

  • 37. High-yield cell ordering and deterministic cell-in-droplet encapsulation using Dean flow in a curved microchannel.
    Kemna EW; Schoeman RM; Wolbers F; Vermes I; Weitz DA; van den Berg A
    Lab Chip; 2012 Aug; 12(16):2881-7. PubMed ID: 22688131
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Continuous focusing of microparticles using inertial lift force and vorticity via multi-orifice microfluidic channels.
    Park JS; Song SH; Jung HI
    Lab Chip; 2009 Apr; 9(7):939-48. PubMed ID: 19294305
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Dynamically tunable elasto-inertial particle focusing and sorting in microfluidics.
    Zhou Y; Ma Z; Ai Y
    Lab Chip; 2020 Feb; 20(3):568-581. PubMed ID: 31894813
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Slanted spiral microfluidics for the ultra-fast, label-free isolation of circulating tumor cells.
    Warkiani ME; Guan G; Luan KB; Lee WC; Bhagat AA; Chaudhuri PK; Tan DS; Lim WT; Lee SC; Chen PC; Lim CT; Han J
    Lab Chip; 2014 Jan; 14(1):128-37. PubMed ID: 23949794
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.