These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 34199145)

  • 41. Parametric study on mixing process in an in-plane spiral micromixer utilizing chaotic advection.
    Vatankhah P; Shamloo A
    Anal Chim Acta; 2018 Aug; 1022():96-105. PubMed ID: 29729743
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Critical conditions for development of a second pair of Dean vortices in curved microfluidic channels.
    Kim M; Borhan A
    Phys Rev E; 2023 May; 107(5-2):055103. PubMed ID: 37329080
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A disposable, roll-to-roll hot-embossed inertial microfluidic device for size-based sorting of microbeads and cells.
    Wang X; Liedert C; Liedert R; Papautsky I
    Lab Chip; 2016 May; 16(10):1821-30. PubMed ID: 27050341
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Study of Microchannels Fabricated Using Desktop Fused Deposition Modeling Systems.
    Rehmani MAA; Jaywant SA; Arif KM
    Micromachines (Basel); 2020 Dec; 12(1):. PubMed ID: 33375727
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Design and evaluation of a Dean vortex-based micromixer.
    Howell PB; Mott DR; Golden JP; Ligler FS
    Lab Chip; 2004 Dec; 4(6):663-9. PubMed ID: 15570382
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Vortex-aided inertial microfluidic device for continuous particle separation with high size-selectivity, efficiency, and purity.
    Wang X; Zhou J; Papautsky I
    Biomicrofluidics; 2013; 7(4):44119. PubMed ID: 24404052
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Mesoscopic simulation of single DNA dynamics in rotational flows.
    Ranjith SK
    Eur Phys J E Soft Matter; 2015 Aug; 38(8):89. PubMed ID: 26314257
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Inertial Focusing of Microparticles in Curvilinear Microchannels.
    Özbey A; Karimzadehkhouei M; Akgönül S; Gozuacik D; Koşar A
    Sci Rep; 2016 Dec; 6():38809. PubMed ID: 27991494
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Dean vortex-enhanced blood plasma separation in self-driven spiral microchannel flow with cross-flow microfilters.
    Wang Y; Talukder N; Nunna BB; Lee ES
    Biomicrofluidics; 2024 Jan; 18(1):014104. PubMed ID: 38343650
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Single stream inertial focusing in low aspect-ratio triangular microchannels.
    Mukherjee P; Wang X; Zhou J; Papautsky I
    Lab Chip; 2018 Dec; 19(1):147-157. PubMed ID: 30488049
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Highly Enriched, Controllable, Continuous Aerosol Sampling Using Inertial Microfluidics and Its Application to Real-Time Detection of Airborne Bacteria.
    Choi J; Hong SC; Kim W; Jung JH
    ACS Sens; 2017 Apr; 2(4):513-521. PubMed ID: 28723191
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A Reconfigurable Microfluidics Platform for Microparticle Separation and Fluid Mixing.
    Hahn YK; Hong D; Kang JH; Choi S
    Micromachines (Basel); 2016 Aug; 7(8):. PubMed ID: 30404310
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Flow-Rate-Insensitive Plasma Extraction by the Stabilization and Acceleration of Secondary Flow in the Ultralow Aspect Ratio Spiral Channel.
    Shen S; Zhang Y; Yang K; Chan H; Li W; Li X; Tian C; Niu Y
    Anal Chem; 2023 Dec; 95(49):18278-18286. PubMed ID: 38016025
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Inertial separation in a contraction-expansion array microchannel.
    Lee MG; Choi S; Park JK
    J Chromatogr A; 2011 Jul; 1218(27):4138-43. PubMed ID: 21176909
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Pinched flow coupled shear-modulated inertial microfluidics for high-throughput rare blood cell separation.
    Bhagat AA; Hou HW; Li LD; Lim CT; Han J
    Lab Chip; 2011 Jun; 11(11):1870-8. PubMed ID: 21505682
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Sheathless Inertial Focusing Chip Combining a Spiral Channel with Periodic Expansion Structures for Efficient and Stable Particle Sorting.
    Gou Y; Zhang S; Sun C; Wang P; You Z; Yalikun Y; Tanaka Y; Ren D
    Anal Chem; 2020 Jan; 92(2):1833-1841. PubMed ID: 31858787
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Dean instability in double-curved channels.
    Debus JD; Mendoza M; Herrmann HJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Nov; 90(5-1):053308. PubMed ID: 25493905
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Resolving dynamics of inertial migration in straight and curved microchannels by direct cross-sectional imaging.
    Zhou J; Papautsky I
    Biomicrofluidics; 2021 Jan; 15(1):014101. PubMed ID: 33425090
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Secondary Flows, Mixing, and Chemical Reaction Analysis of Droplet-Based Flow inside Serpentine Microchannels with Different Cross Sections.
    Ghazimirsaeed E; Madadelahi M; Dizani M; Shamloo A
    Langmuir; 2021 May; 37(17):5118-5130. PubMed ID: 33877832
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Fabrication of three-dimensional helical microchannels with arbitrary length and uniform diameter inside fused silica.
    He S; Chen F; Liu K; Yang Q; Liu H; Bian H; Meng X; Shan C; Si J; Zhao Y; Hou X
    Opt Lett; 2012 Sep; 37(18):3825-7. PubMed ID: 23041872
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.