These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 34199855)

  • 61. 3D scanning and 3D printing as innovative technologies for fabricating personalized topical drug delivery systems.
    Goyanes A; Det-Amornrat U; Wang J; Basit AW; Gaisford S
    J Control Release; 2016 Jul; 234():41-8. PubMed ID: 27189134
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Evaluating and Comparing Flexure Strength of Dental Models Printed Using Fused Deposition Modelling, Digital Light Processing, and Stereolithography Apparatus Printers.
    Atwal N; Bhatnagar D
    Cureus; 2024 Feb; 16(2):e54312. PubMed ID: 38496206
    [TBL] [Abstract][Full Text] [Related]  

  • 63. 3D printing for drug manufacturing: A perspective on the future of pharmaceuticals.
    Lepowsky E; Tasoglu S
    Int J Bioprint; 2018; 4(1):119. PubMed ID: 33102905
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Development of an implantable intrathecal drug infusion pump.
    Hong S; Lee JS; Park JW; Nam K; Choi J; Lee JC; Park JK; Ko YP; Jo YH
    Conf Proc IEEE Eng Med Biol Soc; 2004; 2004():3440-2. PubMed ID: 17271024
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Micro Injection Molding of Drug-Loaded Round Window Niche Implants for an Animal Model Using 3D-Printed Molds.
    Mau R; Eickner T; Jüttner G; Gao Z; Wei C; Fiedler N; Senz V; Lenarz T; Grabow N; Scheper V; Seitz H
    Pharmaceutics; 2023 May; 15(6):. PubMed ID: 37376033
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Three-Dimensional (3-D) Printing Technology Exploited for the Fabrication of Drug Delivery Systems.
    Zeeshan F; Madheswaran T; Pandey M; Gorain B
    Curr Pharm Des; 2018; 24(42):5019-5028. PubMed ID: 30621558
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Dynamic phase control with printing and fluidic materials' interaction by inkjet printing an RF sensor directly on a stereolithographic 3D printed microfluidic structure.
    Park E; Lim S
    Lab Chip; 2021 Nov; 21(22):4364-4378. PubMed ID: 34585708
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Fabrication of 3D-Printed Fish-Gelatin-Based Polymer Hydrogel Patches for Local Delivery of PEGylated Liposomal Doxorubicin.
    Liu J; Tagami T; Ozeki T
    Mar Drugs; 2020 Jun; 18(6):. PubMed ID: 32575787
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Acoustofluidic Based Wireless Micropump for Portable Drug Delivery Applications
    You R; Fu X; Duan X
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():1276-1279. PubMed ID: 34891518
    [TBL] [Abstract][Full Text] [Related]  

  • 70. 3D printing and 3D-printed electronics: Applications and future trends in smart drug delivery devices.
    Cheung Ma W; Liang Goh G; Meera Priyadarshini B; Yee Yeong W
    Int J Bioprint; 2023; 9(4):725. PubMed ID: 37323494
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Piezoelectric micropump with integrated elastomeric check valves: design, performance characterization and primary application for 3D cell culture.
    Holman JB; Zhu X; Cheng H
    Biomed Microdevices; 2023 Jan; 25(1):5. PubMed ID: 36648587
    [TBL] [Abstract][Full Text] [Related]  

  • 72. 3D-printed morphology-customized microneedles: Understanding the correlation between their morphologies and the received qualities.
    Yang Q; Zhong W; Liu Y; Hou R; Wu Y; Yan Q; Yang G
    Int J Pharm; 2023 May; 638():122873. PubMed ID: 36958610
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Emerging Anti-Fouling Methods: Towards Reusability of 3D-Printed Devices for Biomedical Applications.
    Lepowsky E; Tasoglu S
    Micromachines (Basel); 2018 Apr; 9(4):. PubMed ID: 30424129
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Durable scalable 3D SLA-printed cuff electrodes with high performance carbon + PEDOT:PSS-based contacts.
    Doering OM; Vetter C; Alhawwash A; Horn MR; Yoshida K
    Artif Organs; 2022 Oct; 46(10):2085-2096. PubMed ID: 35971860
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Monolithically 3D-Printed Microfluidics with Embedded µTesla Pump.
    Duan K; Orabi M; Warchock A; Al-Akraa Z; Ajami Z; Chun TH; Lo JF
    Micromachines (Basel); 2023 Jan; 14(2):. PubMed ID: 36837937
    [TBL] [Abstract][Full Text] [Related]  

  • 76. 3D-printed chemiluminescence flow cells with customized cross-section geometry for enhanced analytical performance.
    García-Moll L; Sixto A; Carrasco-Correa EJ; Miró M
    Talanta; 2023 Apr; 255():124211. PubMed ID: 36634426
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Intelligent Microsystem for Sound Event Recognition in Edge Computing Using End-to-End Mesh Networking.
    Hou L; Duan W; Xuan G; Xiao S; Li Y; Li Y; Zhao J
    Sensors (Basel); 2023 Mar; 23(7):. PubMed ID: 37050691
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Peristaltic piezoelectric micropump system for biomedical applications.
    Jang LS; Kan WH
    Biomed Microdevices; 2007 Aug; 9(4):619-26. PubMed ID: 17505886
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Vat photopolymerization 3D printing for advanced drug delivery and medical device applications.
    Xu X; Awad A; Robles-Martinez P; Gaisford S; Goyanes A; Basit AW
    J Control Release; 2021 Jan; 329():743-757. PubMed ID: 33031881
    [TBL] [Abstract][Full Text] [Related]  

  • 80. 3D Printing Technologies: Recent Development and Emerging Applications in Various Drug Delivery Systems.
    Jacob S; Nair AB; Patel V; Shah J
    AAPS PharmSciTech; 2020 Aug; 21(6):220. PubMed ID: 32748243
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.