These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
145 related articles for article (PubMed ID: 34199954)
1. Determination of Nutrients in Liquid Manures and Biogas Digestates by Portable Energy-Dispersive X-ray Fluorescence Spectrometry. Horf M; Gebbers R; Vogel S; Ostermann M; Piepel MF; Olfs HW Sensors (Basel); 2021 Jun; 21(11):. PubMed ID: 34199954 [TBL] [Abstract][Full Text] [Related]
2. Use of biogas digestates obtained by anaerobic digestion and co-digestion as fertilizers: Characterization, soil biological activity and growth dynamic of Lactuca sativa L. Iocoli GA; Zabaloy MC; Pasdevicelli G; Gómez MA Sci Total Environ; 2019 Jan; 647():11-19. PubMed ID: 30077158 [TBL] [Abstract][Full Text] [Related]
3. Concentrations of Trace Elements in Organic Fertilizers and Animal Manures and Feeds and Cadmium Contamination in Herbal Tea (Gynostemma pentaphyllum Makino). Nookabkaew S; Rangkadilok N; Prachoom N; Satayavivad J J Agric Food Chem; 2016 Apr; 64(16):3119-26. PubMed ID: 27058252 [TBL] [Abstract][Full Text] [Related]
4. From the application of antibiotics to antibiotic residues in liquid manures and digestates: A screening study in one European center of conventional pig husbandry. Widyasari-Mehta A; Hartung S; Kreuzig R J Environ Manage; 2016 Jul; 177():129-37. PubMed ID: 27088209 [TBL] [Abstract][Full Text] [Related]
5. Effects of sample pre-treatments on the analysis of liquid organic manures by visible and near-infrared spectrometry. Horf M; Gebbers R; Olfs HW; Vogel S Heliyon; 2024 Mar; 10(5):e27136. PubMed ID: 38463763 [TBL] [Abstract][Full Text] [Related]
6. Diagnostic Value of Energy Dispersive Hand-Held X-ray Fluorescence Spectrometry in Determining Trace Element Concentrations in Ovine Liver. van Loggerenberg DE; Laver PN; Myburgh JG; Botha CJ Biol Trace Elem Res; 2019 Aug; 190(2):358-361. PubMed ID: 30315508 [TBL] [Abstract][Full Text] [Related]
7. Chemical and microbiological characterization of pig manures and digestates. Sun K; Jiang L; Ye Q; Wang Q; Liao D; Chang X; Xi S; He R Environ Technol; 2023 May; 44(13):1916-1925. PubMed ID: 34882526 [TBL] [Abstract][Full Text] [Related]
8. Determining nutrients, dry matter, and pH of liquid organic manures using visual and near-infrared spectrometry. Horf M; Gebbers R; Olfs HW; Vogel S Sci Total Environ; 2024 Jan; 908():168045. PubMed ID: 37923277 [TBL] [Abstract][Full Text] [Related]
9. Laboratory testing on the removal of the veterinary antibiotic doxycycline during long-term liquid pig manure and digestate storage. Widyasari-Mehta A; Suwito HR; Kreuzig R Chemosphere; 2016 Apr; 149():154-60. PubMed ID: 26855219 [TBL] [Abstract][Full Text] [Related]
10. Antibiotic residues in substrates and output materials from biogas plants - Implications for agriculture. Lehmann L; Bloem E Chemosphere; 2021 Sep; 278():130425. PubMed ID: 33831681 [TBL] [Abstract][Full Text] [Related]
12. Comparative characterization of digestate versus pig slurry and cow manure - Chemical composition and effects on soil microbial activity. Risberg K; Cederlund H; Pell M; Arthurson V; Schnürer A Waste Manag; 2017 Mar; 61():529-538. PubMed ID: 28038908 [TBL] [Abstract][Full Text] [Related]
13. Influence of solid-liquid separation strategy on biogas yield from a stratified swine production system. Cestonaro do Amaral A; Kunz A; Radis Steinmetz RL; Scussiato LA; Tápparo DC; Gaspareto TC J Environ Manage; 2016 Mar; 168():229-35. PubMed ID: 26716354 [TBL] [Abstract][Full Text] [Related]
14. The impact of biogas digestate typology on nutrient recovery for plant growth: Accessibility indicators for first fertilization prediction. Jimenez J; Grigatti M; Boanini E; Patureau D; Bernet N Waste Manag; 2020 Nov; 117():18-31. PubMed ID: 32805598 [TBL] [Abstract][Full Text] [Related]
15. Contaminations of organic fertilizers with antibiotic residues, resistance genes, and mobile genetic elements mirroring antibiotic use in livestock? Wolters B; Widyasari-Mehta A; Kreuzig R; Smalla K Appl Microbiol Biotechnol; 2016 Nov; 100(21):9343-9353. PubMed ID: 27522197 [TBL] [Abstract][Full Text] [Related]
16. Growth of bacterial phytopathogens in animal manures. Sledz W; Zoledowska S; Motyka A; Kadziński L; Banecki B Acta Biochim Pol; 2017; 64(1):151-159. PubMed ID: 28319994 [TBL] [Abstract][Full Text] [Related]
17. Swine manure valorization in fabrication of nutrition and energy. Giwa AS; Ali N; Asif M Appl Microbiol Biotechnol; 2020 Dec; 104(23):9921-9933. PubMed ID: 33074416 [TBL] [Abstract][Full Text] [Related]
18. Environmental consequences of processing manure to produce mineral fertilizer and bio-energy. De Vries JW; Groenestein CM; De Boer IJ J Environ Manage; 2012 Jul; 102():173-83. PubMed ID: 22459014 [TBL] [Abstract][Full Text] [Related]
19. Effects of biogas slurry fertilization on fruit economic traits and soil nutrients of Camellia oleifera Abel. You L; Yu S; Liu H; Wang C; Zhou Z; Zhang L; Hu D PLoS One; 2019; 14(5):e0208289. PubMed ID: 31071086 [TBL] [Abstract][Full Text] [Related]
20. Use of a field portable X-Ray fluorescence analyzer to determine the concentration of lead and other metals in soil samples. Clark S; Menrath W; Chen M; Roda S; Succop P Ann Agric Environ Med; 1999; 6(1):27-32. PubMed ID: 10384212 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]