BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

257 related articles for article (PubMed ID: 34200093)

  • 1. Influence of the Feedstock on the Process Parameters, Product Composition and Pilot-Scale Cracking of Plastics.
    Frączak D; Fabiś G; Orlińska B
    Materials (Basel); 2021 Jun; 14(11):. PubMed ID: 34200093
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Catalyst-mediated pyrolysis of waste plastics: tuning yield, composition, and nature of pyrolysis oil.
    Kanattukara BV; Singh G; Sarkar P; Chopra A; Singh D; Mondal S; Kapur GS; Ramakumar SSV
    Environ Sci Pollut Res Int; 2023 May; 30(24):64994-65010. PubMed ID: 37074603
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pyrolysis of polyolefins for increasing the yield of monomers' recovery.
    Donaj PJ; Kaminsky W; Buzeto F; Yang W
    Waste Manag; 2012 May; 32(5):840-6. PubMed ID: 22093704
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermal degradation of waste plastics under non-sweeping atmosphere: Part 1: Effect of temperature, product optimization, and degradation mechanism.
    Singh RK; Ruj B; Sadhukhan AK; Gupta P
    J Environ Manage; 2019 Jun; 239():395-406. PubMed ID: 30928634
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermal pyrolysis of waste versus virgin polyolefin feedstocks: The role of pressure, temperature and waste composition.
    Abbas-Abadi MS; Kusenberg M; Zayoud A; Roosen M; Vermeire F; Madanikashani S; Kuzmanović M; Parvizi B; Kresovic U; De Meester S; Van Geem KM
    Waste Manag; 2023 Jun; 165():108-118. PubMed ID: 37119685
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessing the feasibility of chemical recycling via steam cracking of untreated plastic waste pyrolysis oils: Feedstock impurities, product yields and coke formation.
    Kusenberg M; Roosen M; Zayoud A; Djokic MR; Dao Thi H; De Meester S; Ragaert K; Kresovic U; Van Geem KM
    Waste Manag; 2022 Mar; 141():104-114. PubMed ID: 35101750
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Closing the loop for PET, PE and PP waste from households: Influence of material properties and product design for plastic recycling.
    Eriksen MK; Christiansen JD; Daugaard AE; Astrup TF
    Waste Manag; 2019 Aug; 96():75-85. PubMed ID: 31376972
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Can Pyrolysis Oil Be Used as a Feedstock to Close the Gap in the Circular Economy of Polyolefins?
    Erkmen B; Ozdogan A; Ezdesir A; Celik G
    Polymers (Basel); 2023 Feb; 15(4):. PubMed ID: 36850143
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chemical recycling of plastic waste: Bitumen, solvents, and polystyrene from pyrolysis oil.
    Baena-González J; Santamaria-Echart A; Aguirre JL; González S
    Waste Manag; 2020 Dec; 118():139-149. PubMed ID: 32892091
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recycling potential of post-consumer plastic packaging waste in Finland.
    Dahlbo H; Poliakova V; Mylläri V; Sahimaa O; Anderson R
    Waste Manag; 2018 Jan; 71():52-61. PubMed ID: 29097129
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Production of hydrogen-rich fuel gas from waste plastics using continuous plasma pyrolysis reactor.
    Bhatt KP; Patel S; Upadhyay DS; Patel RN
    J Environ Manage; 2024 Apr; 356():120446. PubMed ID: 38484595
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Catalytic pyrolysis of petroleum-based and biodegradable plastic waste to obtain high-value chemicals.
    Saeaung K; Phusunti N; Phetwarotai W; Assabumrungrat S; Cheirsilp B
    Waste Manag; 2021 May; 127():101-111. PubMed ID: 33932851
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recent Trends in the Pyrolysis of Non-Degradable Waste Plastics.
    Gebre SH; Sendeku MG; Bahri M
    ChemistryOpen; 2021 Dec; 10(12):1202-1226. PubMed ID: 34873881
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification and quantification of selected plastics in biosolids by pressurized liquid extraction combined with double-shot pyrolysis gas chromatography-mass spectrometry.
    Okoffo ED; Ribeiro F; O'Brien JW; O'Brien S; Tscharke BJ; Gallen M; Samanipour S; Mueller JF; Thomas KV
    Sci Total Environ; 2020 May; 715():136924. PubMed ID: 32007891
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pyrolysis of plastic packaging waste: A comparison of plastic residuals from material recovery facilities with simulated plastic waste.
    Adrados A; de Marco I; Caballero BM; López A; Laresgoiti MF; Torres A
    Waste Manag; 2012 May; 32(5):826-32. PubMed ID: 21795037
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Towards a lumped approach for solid plastic waste gasification: Polyethylene and polypropylene pyrolysis.
    Locaspi A; Pelucchi M; Mehl M; Faravelli T
    Waste Manag; 2023 Feb; 156():107-117. PubMed ID: 36462341
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pyrolytic conversion of waste plastics to energy products: A review on yields, properties, and production costs.
    Faisal F; Rasul MG; Jahirul MI; Schaller D
    Sci Total Environ; 2023 Feb; 861():160721. PubMed ID: 36496020
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Probabilistic Material Flow Analysis of Seven Commodity Plastics in Europe.
    Kawecki D; Scheeder PRW; Nowack B
    Environ Sci Technol; 2018 Sep; 52(17):9874-9888. PubMed ID: 30004221
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biodegradation of plastics for sustainable environment.
    Singh Jadaun J; Bansal S; Sonthalia A; Rai AK; Singh SP
    Bioresour Technol; 2022 Mar; 347():126697. PubMed ID: 35026422
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Method development and evaluation of pyrolysis oils from mixed waste plastic by GC-VUV.
    Dunkle MN; Pijcke P; Winniford WL; Ruitenbeek M; Bellos G
    J Chromatogr A; 2021 Jan; 1637():461837. PubMed ID: 33383237
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.