These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
235 related articles for article (PubMed ID: 34200332)
1. Predicting the Local Response of Esophageal Squamous Cell Carcinoma to Neoadjuvant Chemoradiotherapy by Radiomics with a Machine Learning Method Using Murakami Y; Kawahara D; Tani S; Kubo K; Katsuta T; Imano N; Takeuchi Y; Nishibuchi I; Saito A; Nagata Y Diagnostics (Basel); 2021 Jun; 11(6):. PubMed ID: 34200332 [TBL] [Abstract][Full Text] [Related]
2. A machine learning approach using Qi WX; Li S; Xiao J; Li H; Chen J; Zhao S Front Immunol; 2024; 15():1351750. PubMed ID: 38352868 [TBL] [Abstract][Full Text] [Related]
3. A prediction model for degree of differentiation for resectable locally advanced esophageal squamous cell carcinoma based on CT images using radiomics and machine-learning. Kawahara D; Murakami Y; Tani S; Nagata Y Br J Radiol; 2021 Aug; 94(1124):20210525. PubMed ID: 34235955 [TBL] [Abstract][Full Text] [Related]
4. Computed tomography-based deep-learning prediction of neoadjuvant chemoradiotherapy treatment response in esophageal squamous cell carcinoma. Hu Y; Xie C; Yang H; Ho JWK; Wen J; Han L; Lam KO; Wong IYH; Law SYK; Chiu KWH; Vardhanabhuti V; Fu J Radiother Oncol; 2021 Jan; 154():6-13. PubMed ID: 32941954 [TBL] [Abstract][Full Text] [Related]
5. Predicting Response to Neoadjuvant Chemoradiotherapy in Esophageal Cancer with Textural Features Derived from Pretreatment Beukinga RJ; Hulshoff JB; van Dijk LV; Muijs CT; Burgerhof JGM; Kats-Ugurlu G; Slart RHJA; Slump CH; Mul VEM; Plukker JTM J Nucl Med; 2017 May; 58(5):723-729. PubMed ID: 27738011 [TBL] [Abstract][Full Text] [Related]
6. CT-based delta-radiomics nomogram to predict pathological complete response after neoadjuvant chemoradiotherapy in esophageal squamous cell carcinoma patients. Fan L; Yang Z; Chang M; Chen Z; Wen Q J Transl Med; 2024 Jun; 22(1):579. PubMed ID: 38890720 [TBL] [Abstract][Full Text] [Related]
7. Radiomics and dosiomics for predicting complete response to definitive chemoradiotherapy patients with oesophageal squamous cell cancer using the hybrid institution model. Kawahara D; Murakami Y; Awane S; Emoto Y; Iwashita K; Kubota H; Sasaki R; Nagata Y Eur Radiol; 2024 Feb; 34(2):1200-1209. PubMed ID: 37589902 [TBL] [Abstract][Full Text] [Related]
8. Development and validation of a radiomics signature on differentially expressed features of Cao Q; Li Y; Li Z; An D; Li B; Lin Q Radiother Oncol; 2020 May; 146():9-15. PubMed ID: 32065875 [TBL] [Abstract][Full Text] [Related]
9. Development and Validation of a Radiomics Nomogram Model for Predicting Postoperative Recurrence in Patients With Esophageal Squamous Cell Cancer Who Achieved pCR After Neoadjuvant Chemoradiotherapy Followed by Surgery. Qiu Q; Duan J; Deng H; Han Z; Gu J; Yue NJ; Yin Y Front Oncol; 2020; 10():1398. PubMed ID: 32850451 [No Abstract] [Full Text] [Related]
10. A nomogram based on pretreatment radiomics and dosiomics features for predicting overall survival associated with esophageal squamous cell cancer. Kawahara D; Nishioka R; Murakami Y; Emoto Y; Iwashita K; Sasaki R Eur J Surg Oncol; 2024 Jul; 50(7):108450. PubMed ID: 38843660 [TBL] [Abstract][Full Text] [Related]
11. Prediction of Response to Neoadjuvant Chemotherapy and Radiation Therapy with Baseline and Restaging Beukinga RJ; Hulshoff JB; Mul VEM; Noordzij W; Kats-Ugurlu G; Slart RHJA; Plukker JTM Radiology; 2018 Jun; 287(3):983-992. PubMed ID: 29533721 [TBL] [Abstract][Full Text] [Related]
12. Machine learning-based multiparametric MRI radiomics for predicting poor responders after neoadjuvant chemoradiotherapy in rectal Cancer patients. Wang J; Chen J; Zhou R; Gao Y; Li J BMC Cancer; 2022 Apr; 22(1):420. PubMed ID: 35439946 [TBL] [Abstract][Full Text] [Related]
13. Analysis of Cross-Combinations of Feature Selection and Machine-Learning Classification Methods Based on [ Gómez OV; Herraiz JL; Udías JM; Haug A; Papp L; Cioni D; Neri E Cancers (Basel); 2022 Jun; 14(12):. PubMed ID: 35740588 [TBL] [Abstract][Full Text] [Related]
14. MR radiomics predicts pathological complete response of esophageal squamous cell carcinoma after neoadjuvant chemoradiotherapy: a multicenter study. Liu Y; Wang Y; Wang X; Xue L; Zhang H; Ma Z; Deng H; Yang Z; Sun X; Men Y; Ye F; Men K; Qin J; Bi N; Wang Q; Hui Z Cancer Imaging; 2024 Jan; 24(1):16. PubMed ID: 38263134 [TBL] [Abstract][Full Text] [Related]
16. Predicting pathological complete response in rectal cancer after chemoradiotherapy with a random forest using Shen WC; Chen SW; Wu KC; Lee PY; Feng CL; Hsieh TC; Yen KY; Kao CH Ann Transl Med; 2020 Mar; 8(5):207. PubMed ID: 32309354 [TBL] [Abstract][Full Text] [Related]
17. Radiomics Signature Based on Support Vector Machines for the Prediction of Pathological Complete Response to Neoadjuvant Chemoradiotherapy in Locally Advanced Rectal Cancer. Li C; Chen H; Zhang B; Fang Y; Sun W; Wu D; Su Z; Shen L; Wei Q Cancers (Basel); 2023 Oct; 15(21):. PubMed ID: 37958309 [TBL] [Abstract][Full Text] [Related]
18. CT-based deep learning radiomics and hematological biomarkers in the assessment of pathological complete response to neoadjuvant chemoradiotherapy in patients with esophageal squamous cell carcinoma: A two-center study. Zhang M; Lu Y; Sun H; Hou C; Zhou Z; Liu X; Zhou Q; Li Z; Yin Y Transl Oncol; 2024 Jan; 39():101804. PubMed ID: 37839176 [TBL] [Abstract][Full Text] [Related]
19. Use of radiomics based on Zhou Y; Ma XL; Zhang T; Wang J; Zhang T; Tian R Eur J Nucl Med Mol Imaging; 2021 Aug; 48(9):2904-2913. PubMed ID: 33547553 [TBL] [Abstract][Full Text] [Related]
20. Assessment of Intratumoral and Peritumoral Computed Tomography Radiomics for Predicting Pathological Complete Response to Neoadjuvant Chemoradiation in Patients With Esophageal Squamous Cell Carcinoma. Hu Y; Xie C; Yang H; Ho JWK; Wen J; Han L; Chiu KWH; Fu J; Vardhanabhuti V JAMA Netw Open; 2020 Sep; 3(9):e2015927. PubMed ID: 32910196 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]