BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 34200359)

  • 1. Advanced Biofuels Based on Fischer-Tropsch Synthesis for Applications in Gasoline Engines.
    Hájek J; Hönig V; Obergruber M; Jenčík J; Vráblík A; Černý R; Pšenička M; Herink T
    Materials (Basel); 2021 Jun; 14(11):. PubMed ID: 34200359
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Advanced Biofuels Based on Fischer-Tropsch Synthesis for Applications in Diesel Engines.
    Jenčík J; Hönig V; Obergruber M; Hájek J; Vráblík A; Černý R; Schlehöfer D; Herink T
    Materials (Basel); 2021 Jun; 14(11):. PubMed ID: 34199859
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Natural Gas and Cellulosic Biomass: A Clean Fuel Combination? Determining the Natural Gas Blending Wall in Biofuel Production.
    M Wright M; Seifkar N; Green WH; Román-Leshkov Y
    Environ Sci Technol; 2015 Jul; 49(13):8183-92. PubMed ID: 26010031
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydrocracking of Heavy Fischer-Tropsch Wax Distillation Residues and Its Blends with Vacuum Gas Oil Using Phonolite-Based Catalysts.
    Frątczak J; de Paz Carmona H; Tišler Z; Hidalgo Herrador JM; Gholami Z
    Molecules; 2021 Nov; 26(23):. PubMed ID: 34885761
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A model of an integrated hydrothermal liquefaction, gasification and Fischer-Tropsch synthesis process for converting lignocellulosic forest residues into hydrocarbons.
    Stigsson C; Furusjö E; Börjesson P
    Bioresour Technol; 2022 Jun; 353():126070. PubMed ID: 34624474
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fischer-Tropsch catalysts for the production of hydrocarbon fuels with high selectivity.
    Zhang Q; Cheng K; Kang J; Deng W; Wang Y
    ChemSusChem; 2014 May; 7(5):1251-64. PubMed ID: 24339240
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigation of engine performance and emissions of a diesel engine with a blend of marine gas oil and synthetic diesel fuel.
    Nabi MN; Hustad JE
    Environ Technol; 2012; 33(1-3):9-15. PubMed ID: 22519083
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A life-cycle comparison of alternative automobile fuels.
    MacLean HL; Lave LB; Lankey R; Joshi S
    J Air Waste Manag Assoc; 2000 Oct; 50(10):1769-79. PubMed ID: 11288305
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Life-Cycle Comparison of Alternative Automobile Fuels.
    MacLean HL; Lave LB; Lankey R; Joshi S
    J Air Waste Manag Assoc; 2000 Oct; 50(10):1769-1779. PubMed ID: 28076232
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pathways resilient future for developing a sustainable E85 fuel and prospects towards its applications.
    Savelenko VD; Ershov MA; Kapustin VM; Chernysheva EA; Abdellatief TMM; Makhova UA; Makhmudova AE; Abdelkareem MA; Olabi AG
    Sci Total Environ; 2022 Oct; 844():157069. PubMed ID: 35780873
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Alternative component containing diesel fuel from different waste sources.
    Tóth O; Holló A; Hancsók J
    J Environ Manage; 2020 Jul; 265():110562. PubMed ID: 32292175
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Uniqueness technique for introducing high octane environmental gasoline using renewable oxygenates and its formulation on Fuzzy modeling.
    Abdellatief TMM; Ershov MA; Kapustin VM; Chernysheva EA; Savelenko VD; Salameh T; Abdelkareem MA; Olabi AG
    Sci Total Environ; 2022 Jan; 802():149863. PubMed ID: 34525749
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Physicochemical Properties of Biobutanol as an Advanced Biofuel.
    Obergruber M; Hönig V; Procházka P; Kučerová V; Kotek M; Bouček J; Mařík J
    Materials (Basel); 2021 Feb; 14(4):. PubMed ID: 33671951
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Life Cycle Greenhouse Gas Emissions and Costs of Production of Diesel and Jet Fuel from Municipal Solid Waste.
    Suresh P; Malina R; Staples MD; Lizin S; Olcay H; Blazy D; Pearlson MN; Barrett SRH
    Environ Sci Technol; 2018 Nov; 52(21):12055-12065. PubMed ID: 30289698
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Energy and emission benefits of alternative transportation liquid fuels derived from switchgrass: a fuel life cycle assessment.
    Wu M; Wu Y; Wang M
    Biotechnol Prog; 2006; 22(4):1012-24. PubMed ID: 16889378
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Qualitative assessment of regular and premium gasoline available in Bangladesh markets.
    Mondal S; Sabbir MHR; Islam MR; Ferdous MF; Hassan Mondol MM; Hossain MJ
    Heliyon; 2024 Apr; 10(7):e29089. PubMed ID: 38601578
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Life cycle sustainability assessment of synthetic fuels from date palm waste.
    Ben Hnich K; Martín-Gamboa M; Khila Z; Hajjaji N; Dufour J; Iribarren D
    Sci Total Environ; 2021 Nov; 796():148961. PubMed ID: 34271384
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biofuel Options for Marine Applications: Technoeconomic and Life-Cycle Analyses.
    Tan ECD; Hawkins TR; Lee U; Tao L; Meyer PA; Wang M; Thompson T
    Environ Sci Technol; 2021 Jun; 55(11):7561-7570. PubMed ID: 33998807
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fuel composition and secondary organic aerosol formation: gas-turbine exhaust and alternative aviation fuels.
    Miracolo MA; Drozd GT; Jathar SH; Presto AA; Lipsky EM; Corporan E; Robinson AL
    Environ Sci Technol; 2012 Aug; 46(15):8493-501. PubMed ID: 22732009
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Life Cycle Analysis of Electrofuels: Fischer-Tropsch Fuel Production from Hydrogen and Corn Ethanol Byproduct CO
    Zang G; Sun P; Elgowainy A; Bafana A; Wang M
    Environ Sci Technol; 2021 Mar; 55(6):3888-3897. PubMed ID: 33661618
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.